Spaces:
Running
Running
import os | |
import tempfile | |
from typing import Dict | |
import ImageReward as RM | |
import torch | |
from PIL import Image | |
class ImageRewardMetric: | |
def __init__(self): | |
self.device = torch.device( | |
"cuda" | |
if torch.cuda.is_available() | |
else "mps" | |
if torch.backends.mps.is_available() | |
else "cpu" | |
) | |
self.model = RM.load("ImageReward-v1.0", device=str(self.device)) | |
def name(self) -> str: | |
return "image_reward" | |
def compute_score( | |
self, | |
image: Image.Image, | |
prompt: str, | |
) -> Dict[str, float]: | |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp: | |
image.save(tmp.name) | |
score = self.model.score(prompt, [tmp.name]) | |
os.unlink(tmp.name) | |
return {"image_reward": score} | |