from typing import Dict import numpy as np import torch from PIL import Image from torchmetrics.image.arniqa import ARNIQA class ARNIQAMetric: def __init__(self): self.device = torch.device( "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" ) self.metric = ARNIQA( regressor_dataset="koniq10k", reduction="mean", normalize=True, autocast=False, ) self.metric.to(self.device) @property def name(self) -> str: return "arniqa" def compute_score(self, image: Image.Image, prompt: str) -> Dict[str, float]: image_tensor = ( torch.from_numpy(np.array(image)).permute(2, 0, 1).float() / 255.0 ) image_tensor = image_tensor.unsqueeze(0).to(self.device) score = self.metric(image_tensor) return {"arniqa": score.item()}