from typing import Dict import numpy as np import torch from PIL import Image from torchmetrics.multimodal.clip_score import CLIPScore class CLIPMetric: def __init__(self, model_name_or_path: str = "openai/clip-vit-large-patch14"): self.device = torch.device( "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" ) self.metric = CLIPScore(model_name_or_path="openai/clip-vit-large-patch14") self.metric.to(self.device) @property def name(self) -> str: return "clip" def compute_score(self, image: Image.Image, prompt: str) -> Dict[str, float]: image_tensor = torch.from_numpy(np.array(image)).permute(2, 0, 1).float() image_tensor = image_tensor.to(self.device) score = self.metric(image_tensor, prompt) return {"clip": score.item()}