Spaces:
Running
Running
File size: 11,893 Bytes
97b7267 ee1c5d3 0657cac 97b7267 ee1c5d3 97b7267 ee1c5d3 97b7267 ee1c5d3 97b7267 ee1c5d3 97b7267 ee1c5d3 97b7267 ee1c5d3 0657cac ee1c5d3 97b7267 ee1c5d3 97b7267 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import sqlite3
import pandas as pd
import os
from datetime import datetime
import streamlit as st
# def get_db_path():
# db_path = "../database/stock_insights.db"
# if not os.path.exists(db_path) and os.path.exists("/tmp/stock_insights.db"):
# db_path = "/tmp/stock_insights.db"
# return db_path
# download from Hugging Face dataset
def ensure_db():
repo_path = os.path.join(os.getcwd(), "database", "stock_insights.db")
if os.path.exists(repo_path):
return repo_path
candidates = [
os.path.join("/app", "database", "stock_insights.db"),
os.path.join("/tmp", "database", "stock_insights.db"),
os.path.join("/tmp", "stock_insights.db"),
]
for p in candidates:
if os.path.exists(p):
return p
try:
from huggingface_hub import hf_hub_download
tmp_dir = os.path.join("/tmp", "database")
os.makedirs(tmp_dir, exist_ok=True)
local_file = hf_hub_download(
repo_id="PuppetLover/stock_insights",
filename="stock_insights.db",
repo_type="dataset",
local_dir=tmp_dir,
local_dir_use_symlinks=False,
)
return local_file
except Exception as e:
local_rel = os.path.join("database", "stock_insights.db")
if os.path.exists(local_rel):
return local_rel
raise RuntimeError(f"Cannot access or download database file: {e}")
# gọi và gán hằng DB_PATH dùng trong module
DB_PATH = ensure_db()
def generate_stock_report(stock_code, time_period):
start_date, end_date = time_period
today = datetime.now().date()
# db_path = os.path.join("database", "stock_insights.db")
db_path = DB_PATH
report = {
"stock_code": stock_code,
"report_period": f"{start_date} to {end_date}"
}
with sqlite3.connect(db_path) as conn:
# Tạo bảng tạm relevant_articles
conn.execute("DROP TABLE IF EXISTS relevant_articles;")
conn.execute("""
CREATE TEMP TABLE relevant_articles AS
SELECT DISTINCT article_id FROM entities
WHERE entity_text =?
AND entity_type IN ('STOCK', 'COMPANY')
AND confidence = 'high'
AND article_id IN (
SELECT article_id FROM articles WHERE publish_date BETWEEN ? AND ?
);
""", (stock_code, start_date, end_date))
# 1. OVERALL SENTIMENT
q_sentences = """
SELECT s.sentiment_score, s.sentiment_label, a.publish_date
FROM sentences s
JOIN articles a ON s.article_id = a.article_id
WHERE s.article_id IN (
SELECT s2.sentence_id FROM sentences s2
WHERE s2.article_id IN (SELECT article_id FROM relevant_articles)
)
AND s.sentiment_score IS NOT NULL;
"""
df_sent = pd.read_sql_query(q_sentences, conn)
if not df_sent.empty:
df_sent['publish_date'] = pd.to_datetime(df_sent['publish_date']).dt.date
df_sent['days_ago'] = (today - df_sent['publish_date']).apply(lambda x: x.days)
df_sent['weight'] = 1 / (df_sent['days_ago'] + 1)
weighted_score = (df_sent['sentiment_score'] * df_sent['weight']).sum() / df_sent['weight'].sum()
# Chuẩn hóa nhãn sentiment về lower-case
df_sent['sentiment_label'] = df_sent['sentiment_label'].str.lower()
sentiment_counts = df_sent['sentiment_label'].value_counts().to_dict()
trend = "Tích cực" if weighted_score > 0.1 else "Tiêu cực" if weighted_score < -0.1 else "Trung tính"
else:
weighted_score, sentiment_counts, trend = 0.0, {}, "Không có dữ liệu"
report["overall_sentiment"] = {
"score": weighted_score,
"trend": trend,
"positive_mentions": sentiment_counts.get("positive", 0),
"negative_mentions": sentiment_counts.get("negative", 0),
"neutral_mentions": sentiment_counts.get("neutral", 0)
}
# 2. KEY EVENTS, RISKS, PRICE ACTIONS
def get_key_entities(entity_type):
query = f"""
SELECT
e.entity_text,
COUNT(e.entity_id) as count,
AVG(s.sentiment_score) as avg_sentiment
FROM entities e
JOIN sentences s ON e.sentence_id = s.sentence_id
WHERE e.article_id IN (SELECT article_id FROM relevant_articles)
AND e.entity_type =?
GROUP BY e.entity_text
ORDER BY count DESC
LIMIT 5;
"""
df = pd.read_sql_query(query, conn, params=(entity_type,))
def score_to_label(score):
if score is None: return "N/A"
return "Tích cực" if score > 0.1 else "Tiêu cực" if score < -0.1 else "Trung tính"
df['sentiment'] = df['avg_sentiment'].apply(score_to_label)
return df.to_dict('records')
report["key_events"] = get_key_entities('EVENT')
report["key_price_actions"] = get_key_entities('PRICE_ACTION')
report["key_risks_mentioned"] = get_key_entities('RISK')
# 3. TOP RELATED ENTITIES
q_related = """
SELECT e.entity_type, e.entity_text
FROM entities e
WHERE e.article_id IN (SELECT article_id FROM relevant_articles)
AND e.entity_text!=?
AND e.entity_type IN ('STOCK', 'COMPANY', 'PERSON');
"""
df_related = pd.read_sql_query(q_related, conn, params=(stock_code,))
top_related = {}
if not df_related.empty:
for etype in ['STOCK', 'COMPANY', 'PERSON']:
top_related[etype.lower() + 's'] = df_related[df_related['entity_type'] == etype]['entity_text'].value_counts().head(3).index.tolist()
report["top_related_entities"] = top_related
# 4. SOURCE ARTICLES
q_articles = """
SELECT a.title, a.source_url, s.sentiment_label
FROM articles a
JOIN sentences s ON a.article_id = s.article_id
WHERE a.article_id IN (SELECT article_id FROM relevant_articles)
GROUP BY a.article_id
ORDER BY a.publish_date DESC
LIMIT 5;
"""
df_articles = pd.read_sql_query(q_articles, conn)
report["source_articles"] = df_articles.to_dict('records')
return report
# --- HIỂN THỊ BÁO CÁO ---
def show_report(report_data, summary, stock_code_input):
st.markdown(
f"<h3 style='text-align: center; color: #30cfd0; margin-top:2rem;'>Báo cáo Phân tích cho {report_data.get('stock_code', stock_code_input)}</h3>", unsafe_allow_html=True)
st.markdown(
f"<p style='text-align: center; color: #94a3b8;'>Giai đoạn: {report_data.get('report_period', 'N/A')}</p>", unsafe_allow_html=True)
st.markdown("#### 🤖 Tóm tắt từ AI")
st.info(summary)
# Tổng quan cảm xúc
st.markdown("#### 📊 Tổng quan Cảm xúc")
sentiment = report_data['overall_sentiment']
score = sentiment['score']
trend_color = "normal"
if sentiment['trend'] == "Tích cực":
trend_color = "normal"
if sentiment['trend'] == "Tiêu cực":
trend_color = "inverse"
st.metric(
label="Điểm Cảm xúc (có trọng số thời gian)",
value=f"{score:.2f}" if score is not None else "N/A",
delta=sentiment['trend'],
delta_color=trend_color
)
col1, col2, col3 = st.columns(3)
col1.metric("👍 Tích cực", sentiment['positive_mentions'])
col2.metric("👎 Tiêu cực", sentiment['negative_mentions'])
col3.metric("😐 Trung tính", sentiment['neutral_mentions'])
# Các bảng chi tiết
st.markdown("---")
col_events, col_risks = st.columns(2)
with col_events:
st.markdown("#### ⚡ Sự kiện Nổi bật")
if report_data["key_events"]:
# Kiểm tra key thực tế
df_events = pd.DataFrame(report_data["key_events"])
if 'avg_sentiment' in df_events.columns:
df_events = df_events.rename(
columns={'entity_text': 'Sự kiện', 'avg_sentiment': 'Sentiment'})
show_cols = ['Sự kiện', 'count', 'Sentiment']
elif 'sentiment' in df_events.columns:
df_events = df_events.rename(
columns={'entity_text': 'Sự kiện'})
show_cols = ['Sự kiện', 'count', 'sentiment']
else:
df_events = df_events.rename(
columns={'entity_text': 'Sự kiện'})
show_cols = ['Sự kiện', 'count']
st.dataframe(df_events[show_cols], use_container_width=True)
else:
st.write("Không có sự kiện nổi bật.")
with col_risks:
st.markdown("#### ⚠️ Rủi ro được đề cập")
if report_data["key_risks_mentioned"]:
df_risks = pd.DataFrame(report_data["key_risks_mentioned"])
if 'avg_sentiment' in df_risks.columns:
df_risks = df_risks.rename(
columns={'entity_text': 'Rủi ro', 'avg_sentiment': 'Sentiment'})
show_cols = ['Rủi ro', 'count', 'Sentiment']
elif 'sentiment' in df_risks.columns:
df_risks = df_risks.rename(
columns={'entity_text': 'Rủi ro'})
show_cols = ['Rủi ro', 'count', 'sentiment']
else:
df_risks = df_risks.rename(
columns={'entity_text': 'Rủi ro'})
show_cols = ['Rủi ro', 'count']
st.dataframe(df_risks[show_cols], use_container_width=True)
else:
st.write("Không có rủi ro nổi bật.")
st.markdown("#### 📈 Hành động Giá Chính")
if report_data["key_price_actions"]:
df_price = pd.DataFrame(report_data["key_price_actions"])
if 'avg_sentiment' in df_price.columns:
df_price = df_price.rename(
columns={'entity_text': 'Hành động giá', 'avg_sentiment': 'Sentiment'})
show_cols = ['Hành động giá', 'count', 'Sentiment']
elif 'sentiment' in df_price.columns:
df_price = df_price.rename(
columns={'entity_text': 'Hành động giá'})
show_cols = ['Hành động giá', 'count', 'sentiment']
else:
df_price = df_price.rename(
columns={'entity_text': 'Hành động giá'})
show_cols = ['Hành động giá', 'count']
st.dataframe(df_price[show_cols], use_container_width=True)
else:
st.write("Không có hành động giá nổi bật.")
# Thực thể liên quan
st.markdown("---")
st.markdown("#### 🔗 Các Thực thể Liên quan nhiều nhất")
related = report_data['top_related_entities']
if any(related.values()):
for etype, entities in related.items():
if entities:
st.markdown(
f"**{etype.replace('_', ' ').title()}:** {', '.join(entities)}")
else:
st.write("Không tìm thấy thực thể liên quan nổi bật.")
# Nguồn bài viết
st.markdown("---")
st.markdown("#### 📰 Nguồn Bài viết Tham khảo")
if report_data["source_articles"]:
for article in report_data["source_articles"]:
st.markdown(
f"- [{article['title']}]({article['source_url']}) - *Cảm xúc: {article['sentiment_label']}*")
else:
st.write("Không có bài viết nào trong khoảng thời gian này.")
st.markdown("</div>", unsafe_allow_html=True) |