import os import gradio as gr import requests from sentence_transformers import SentenceTransformer import chromadb HF_API_URL = os.getenv("HF_API_URL") HF_TOKEN = os.getenv("HF_TOKEN") EMB_MODEL = os.getenv("EMB_MODEL", "sentence-transformers/all-MiniLM-L6-v2") client = chromadb.Client() collection = client.get_or_create_collection("medini_memory") embedding_model = SentenceTransformer(EMB_MODEL, use_auth_token=HF_TOKEN) ROLES = [ "Tutor", "Product Manager", "Project Manager", "Designer/Developer", "Technical Writer", "Analyst", "Researcher", "Innovator", "Friend", "Video Generator" ] def retrieve_memory(user_input): results = collection.query(query_texts=[user_input], n_results=3) return " ".join(results.get("documents", [[]])[0]) def upsert_memory(user_input, response): emb = embedding_model.encode(user_input) collection.add(documents=[user_input], embeddings=[emb], ids=[str(hash(user_input))]) def medini_chat(user_input, role): context = retrieve_memory(user_input) payload = {"inputs": f"Role: {role}\nContext: {context}\nUser: {user_input}"} headers = {"Authorization": f"Bearer {HF_TOKEN}"} if HF_TOKEN else {} response = requests.post(HF_API_URL, headers=headers, json=payload) if response.status_code == 200: result = response.json() generated = result.get("generated_text", str(result)) upsert_memory(user_input, generated) return generated else: return f"Error: {response.text}" iface = gr.Interface( fn=medini_chat, inputs=[gr.Textbox(label="Your Message"), gr.Dropdown(ROLES, label="Select Role")], outputs="text", title="Medini - Multi-role AI Assistant", description="Chat with Medini as Tutor, PM, Designer, Analyst, Innovator, Friend, and more." ) if __name__ == "__main__": iface.launch(share=True)