File size: 15,980 Bytes
7b4b619 5a5d1ac 7b4b619 5a5d1ac 9306872 5a5d1ac 7b4b619 5a5d1ac 7b4b619 5a5d1ac 9306872 5a5d1ac 7b4b619 5a5d1ac 7b4b619 5a5d1ac 7b4b619 5a5d1ac 7b4b619 5a5d1ac 9306872 5a5d1ac 7b4b619 5a5d1ac 7b4b619 5a5d1ac 7b4b619 5a5d1ac 7b4b619 5a5d1ac 7b4b619 5a5d1ac 7b4b619 9306872 7b4b619 9306872 7b4b619 9306872 7b4b619 5a5d1ac 9306872 5a5d1ac 9306872 7b4b619 9306872 7b4b619 9306872 7b4b619 9306872 7b4b619 9306872 7b4b619 92f26e3 7b4b619 5a5d1ac 9306872 7b4b619 5a5d1ac 7b4b619 5a5d1ac 7b4b619 5a5d1ac 7b4b619 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
import gradio as gr
import random
import json
import os
import time
from datetime import datetime
from datasets import load_dataset, Dataset
from huggingface_hub import HfApi, create_repo, dataset_info
import pandas as pd
from dotenv import load_dotenv
load_dotenv()
# Configuration
DATASET_NAME = "aaronsnoswell/alignment-annotation-pairwise"
HF_TOKEN = os.getenv("HF_TOKEN")
ANNOTATION_GUIDELINES = """## Guidelines for annotators:
In making your choice, consider the following aspects of responses:
* **Honesty:**
The assistant should be honest about whether it knows the answer and express its uncertainty explicitly. The Assistant should be confident on questions it knows well and modest on those it is unfamiliar with.
The assistant should use weakeners such as "I guess", "I suppose", "probably", and "perhaps" to express uncertainty, and assistants should answer "I don't know" if necessary.
* **Truthfulness:**
The assistant should answer truthfully and be faithful to factual knowledge as well as given contexts, never making up any new facts that aren't true or cannot be grounded in the instruction.
* **Helpfulness:**
The assistant should provide users with accurate, relevant, and up-to-date information, ensuring that the content is positive, interesting, engaging, educational, and helpful.
"""
# Initialize HF API
api = HfApi()
# Load the source dataset
print("Loading UltraFeedback dataset...")
ds = load_dataset("openbmb/UltraFeedback")
train_data = ds['train']
print(f"Dataset loaded with {len(train_data)} examples")
def initialize_dataset():
"""Initialize the annotations dataset if it doesn't exist"""
try:
# Check if dataset exists
dataset_info(DATASET_NAME, token=HF_TOKEN)
print(f"Dataset {DATASET_NAME} already exists")
except:
# Create new dataset
try:
create_repo(
repo_id=DATASET_NAME,
repo_type="dataset",
token=HF_TOKEN,
exist_ok=True
)
# Create initial empty dataset
initial_data = {
"timestamp": [],
"source_idx": [],
"instruction": [],
"completion_1": [],
"completion_2": [],
"preference": [], # "left" or "right" - we don't save on "skip"
"source_dataset": []
}
initial_df = pd.DataFrame(initial_data)
initial_dataset = Dataset.from_pandas(initial_df)
initial_dataset.push_to_hub(DATASET_NAME, token=HF_TOKEN)
print(f"Created new dataset: {DATASET_NAME}")
except Exception as e:
print(f"Error creating dataset: {e}")
def save_annotation(source_idx, instruction, completion_1, completion_2, preference):
"""Save an annotation to the HuggingFace dataset"""
if not HF_TOKEN:
print("No HF_TOKEN found - annotation not saved")
return False
try:
# Prepare the annotation data
annotation = {
"timestamp": [datetime.now().isoformat()],
"source_idx": [source_idx],
"instruction": [instruction],
"completion_1": [completion_1],
"completion_2": [completion_2],
"preference": [preference],
"source_dataset": ["openbmb/UltraFeedback"]
}
# Create dataset from the annotation
new_data = Dataset.from_dict(annotation)
# Load existing dataset and concatenate
try:
existing_dataset = load_dataset(DATASET_NAME, token=HF_TOKEN, split="train")
combined_dataset = Dataset.from_dict({
**existing_dataset.to_dict(),
**{k: existing_dataset[k] + v for k, v in annotation.items()}
})
except:
# If dataset doesn't exist or is empty, use the new data
combined_dataset = new_data
# Push to hub
combined_dataset.push_to_hub(DATASET_NAME, token=HF_TOKEN)
print(f"Saved annotation: {preference} preference for example {source_idx}")
return True
except Exception as e:
print(f"Error saving annotation: {e}")
return False
def get_random_example():
"""Get a random example from the dataset and format it for display"""
idx = random.randint(0, len(train_data) - 1)
dat = train_data[idx]
source = dat['source']
instruction = dat['instruction']
models = dat['models']
completions = dat['completions']
# Get first two completions
completion_1 = completions[0]['response']
completion_2 = completions[1]['response']
model_1 = "Completion A"
model_2 = "Completion B"
# Format prompt display
prompt_display = f"## Prompt:\n\n{instruction}\n\n---"
# Format completion displays
completion_1_display = f"## {model_1}\n\n{completion_1}"
completion_2_display = f"## {model_2}\n\n{completion_2}"
print("Randomly loaded example: ", idx)
return prompt_display, completion_1_display, completion_2_display, idx, instruction, completion_1, completion_2
def format_stats_display(judgment_times, num_judgments, num_skips):
"""Format the statistics display"""
if num_judgments == 0:
return "π **Session Statistics:** No judgments made yet."
avg_time = sum(judgment_times) / len(judgment_times)
stats = f"""π **Session Statistics:** {num_judgments} judgements made, {num_skips} items skipped. Average time per judgement {avg_time:.1f} seconds)."""
return stats
def load_first_example():
"""Load the first example and start the annotation interface"""
prompt, comp_1, comp_2, idx, instruction, completion_1, completion_2 = get_random_example()
start_time = time.time()
return (
prompt, comp_1, comp_2, idx, instruction, completion_1, completion_2,
start_time,
gr.update(visible=False), # Hide load button
gr.update(visible=True), # Show prompt
gr.update(visible=True), # Show completion row
gr.update(visible=True), # Show action buttons
)
def handle_left_better(prompt, completion_1_display, completion_2_display, current_idx, instruction, completion_1, completion_2,
start_time, judgment_times, num_judgments, num_skips):
"""Handle when user selects left completion as better"""
print(f"User selected LEFT completion as better for example {current_idx}")
# Calculate time taken for this judgment
end_time = time.time()
time_taken = end_time - start_time
judgment_times.append(time_taken)
num_judgments += 1
print(f"Time taken for judgment: {time_taken:.1f} seconds")
# Save the annotation
success = save_annotation(current_idx, instruction, completion_1, completion_2, "left")
# Get new random example
new_prompt, new_comp_1, new_comp_2, new_idx, new_instruction, new_completion_1, new_completion_2 = get_random_example()
# Reset timer for new example
new_start_time = time.time()
# Update stats display
stats_display = format_stats_display(judgment_times, num_judgments, num_skips)
message = "β
Annotation saved! Left completion selected as better." if success else "β
Left completion selected (save failed - check console)"
gr.Info(message)
return (
new_prompt,
new_comp_1,
new_comp_2,
new_idx,
new_instruction,
new_completion_1,
new_completion_2,
new_start_time,
judgment_times,
num_judgments,
num_skips,
stats_display
)
def handle_right_better(prompt, completion_1_display, completion_2_display, current_idx, instruction, completion_1, completion_2,
start_time, judgment_times, num_judgments, num_skips):
"""Handle when user selects right completion as better"""
print(f"User selected RIGHT completion as better for example {current_idx}")
# Calculate time taken for this judgment
end_time = time.time()
time_taken = end_time - start_time
judgment_times.append(time_taken)
num_judgments += 1
print(f"Time taken for judgment: {time_taken:.1f} seconds")
# Save the annotation
success = save_annotation(current_idx, instruction, completion_1, completion_2, "right")
# Get new random example
new_prompt, new_comp_1, new_comp_2, new_idx, new_instruction, new_completion_1, new_completion_2 = get_random_example()
# Reset timer for new example
new_start_time = time.time()
# Update stats display
stats_display = format_stats_display(judgment_times, num_judgments, num_skips)
message = "β
Annotation saved! Right completion selected as better." if success else "β
Right completion selected (save failed - check console)"
gr.Info(message)
return (
new_prompt,
new_comp_1,
new_comp_2,
new_idx,
new_instruction,
new_completion_1,
new_completion_2,
new_start_time,
judgment_times,
num_judgments,
num_skips,
stats_display
)
def handle_skip(prompt, completion_1_display, completion_2_display, current_idx, instruction, completion_1, completion_2,
start_time, judgment_times, num_judgments, num_skips):
"""Handle when user skips the current example"""
print(f"User skipped example {current_idx}")
# Increment skip counter (don't track time for skips)
num_skips += 1
# Get new random example
new_prompt, new_comp_1, new_comp_2, new_idx, new_instruction, new_completion_1, new_completion_2 = get_random_example()
# Reset timer for new example
new_start_time = time.time()
# Update stats display
stats_display = format_stats_display(judgment_times, num_judgments, num_skips)
gr.Info("βοΈ Skipped example (not saved).")
return (
new_prompt,
new_comp_1,
new_comp_2,
new_idx,
new_instruction,
new_completion_1,
new_completion_2,
new_start_time,
judgment_times,
num_judgments,
num_skips,
stats_display
)
# Initialize dataset on startup
if HF_TOKEN:
initialize_dataset()
else:
print("Warning: No HF_TOKEN found. Annotations will not be saved.")
def load_first_example():
"""Load the first example and start the annotation interface"""
prompt, comp_1, comp_2, idx, instruction, completion_1, completion_2 = get_random_example()
start_time = time.time()
return (
prompt, comp_1, comp_2, idx, instruction, completion_1, completion_2,
start_time,
gr.update(visible=False), # Hide load button
gr.update(visible=True), # Show prompt
gr.update(visible=True), # Show completion row
gr.update(visible=True), # Show action buttons
)
# Create Gradio interface
with gr.Blocks(title="AI Alignment: Binary Preference Annotation", css=".square-button { height: 80px !important; }") as demo:
gr.Markdown(f"""
# π― AI Alignment: Binary Preference Annotation
You'll see a prompt and two AI completions. Select which completion you think is better, or skip if you're unsure.
This simulates the data annotation process used in RLHF (Reinforcement Learning from Human Feedback) training.
{ANNOTATION_GUIDELINES}
---
""")
# State to track current example and its components
current_idx = gr.State(0)
current_instruction = gr.State("")
current_completion_1 = gr.State("")
current_completion_2 = gr.State("")
# State to track timing and statistics
start_time = gr.State(0.0) # When current example was loaded
judgment_times = gr.State([]) # List of times taken for each judgment
num_judgments = gr.State(0) # Number of judgments made
num_skips = gr.State(0) # Number of examples skipped
# Load first example button (shown initially)
load_first_btn = gr.Button("π Load First Example", variant="primary", size="lg", elem_classes="square-button")
# Display prompt (hidden initially)
prompt_display = gr.Markdown("", label="Prompt", visible=False)
# Display completions side by side (hidden initially)
completion_row = gr.Row(visible=False)
with completion_row:
with gr.Column():
completion_1_display = gr.Markdown("", label="Completion A (Left)")
with gr.Column():
completion_2_display = gr.Markdown("", label="Completion B (Right)")
# Action buttons (hidden initially)
action_buttons = gr.Row(visible=False)
with action_buttons:
left_better_btn = gr.Button("π Left is Better", variant="primary", size="lg")
skip_btn = gr.Button("βοΈ Skip This Example", variant="secondary", size="lg")
right_better_btn = gr.Button("π Right is Better", variant="primary", size="lg")
# Add info about dataset saving
status_msg = "**Status:** β Not connected (annotations will not be saved)."
if HF_TOKEN:
status_msg = f"**Status:** β
Connected. Annotations are being saved to [{DATASET_NAME}](https://huggingface.co/datasets/{DATASET_NAME})"
gr.Markdown(status_msg)
# Statistics display
stats_display = gr.Markdown("π **Session Statistics:** No judgments made yet.", label="Performance Stats")
# Wire up the load first example button
load_first_btn.click(
load_first_example,
inputs=[],
outputs=[prompt_display, completion_1_display, completion_2_display, current_idx, current_instruction, current_completion_1, current_completion_2,
start_time, load_first_btn, prompt_display, completion_row, action_buttons]
)
# Wire up the action buttons
left_better_btn.click(
handle_left_better,
inputs=[prompt_display, completion_1_display, completion_2_display, current_idx, current_instruction, current_completion_1, current_completion_2,
start_time, judgment_times, num_judgments, num_skips],
outputs=[prompt_display, completion_1_display, completion_2_display, current_idx, current_instruction, current_completion_1, current_completion_2,
start_time, judgment_times, num_judgments, num_skips, stats_display]
)
right_better_btn.click(
handle_right_better,
inputs=[prompt_display, completion_1_display, completion_2_display, current_idx, current_instruction, current_completion_1, current_completion_2,
start_time, judgment_times, num_judgments, num_skips],
outputs=[prompt_display, completion_1_display, completion_2_display, current_idx, current_instruction, current_completion_1, current_completion_2,
start_time, judgment_times, num_judgments, num_skips, stats_display]
)
skip_btn.click(
handle_skip,
inputs=[prompt_display, completion_1_display, completion_2_display, current_idx, current_instruction, current_completion_1, current_completion_2,
start_time, judgment_times, num_judgments, num_skips],
outputs=[prompt_display, completion_1_display, completion_2_display, current_idx, current_instruction, current_completion_1, current_completion_2,
start_time, judgment_times, num_judgments, num_skips, stats_display]
)
if __name__ == "__main__":
demo.launch() |