File size: 11,009 Bytes
f874be7
3faa402
 
 
 
 
 
 
 
 
 
 
 
 
281261a
3faa402
247b93d
3faa402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8184244
3faa402
 
 
 
 
 
281261a
3faa402
247b93d
3faa402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8184244
3faa402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
622fbfb
3faa402
 
 
 
 
 
 
 
247b93d
3faa402
 
247b93d
3faa402
 
 
 
 
 
247b93d
3faa402
247b93d
3faa402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
247b93d
3faa402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
247b93d
3faa402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f874be7
3faa402
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import streamlit as st
import torch
import torch.nn as nn
import torch.nn.functional as F
import io
import zipfile
from PIL import Image
import numpy as np
import os

st.set_page_config(layout="wide", page_title="Synthetic Image Generator - Conditional GAN")

TEXTS = {
    "en": {
        "title": "RAYgan Datasets Generator",
        "description": "Uses a **Conditional Generative Adversarial Network (GAN)** to generate synthetic clothing images.",
        "model_source": "Model source: [RAYAuser/raygan-zalando-datasetsgen](https://huggingface.co/RAYAuser/raygan-zalando-datasetsgen)",
        "sidebar_header": "Generation Options",
        "language_select": "Language",
        "generation_mode_radio": "Generation Mode:",
        "mode_class": "Generate by Class",
        "mode_dataset": "Generate a Full Dataset",
        "select_class": "Choose a Class:",
        "num_images_input": "Number of images to generate:",
        "num_images_per_class": "Number of images per class:",
        "generate_button": "Launch Generation",
        "generation_in_progress": "Generation in progress...",
        "generating_class_info": "Generating {num_images} images for class '{class_name}'...",
        "generating_dataset_info": "Generating a complete dataset of {num_images} images ({num_images_per_class} per class)...",
        "preview_header": "Preview of Generated Images",
        "preview_caption": "Preview {idx}",
        "download_button": "Download ZIP file",
        "generation_success": "Generation complete and images ready for download!",
        "model_not_found_error": "Error Management : The model file could not be found locally.",
        "instructions_header": "Instructions:",
        "instructions_1": "1. Choose your generation mode.",
        "instructions_2": "2. Enter the number of images you want to create.",
        "instructions_3": "3. Click on 'Launch Generation'.",
    },
    "fr": {
        "title": "RAYgan Datasets Generator",
        "description": "Utilise un modèle **Conditional Generative Adversarial Network (GAN)** pour générer des images synthétiques de vêtements.",
        "model_source": "Source du modèle : [RAYAuser/raygan-zalando-datasetsgen](https://huggingface.co/RAYAuser/raygan-zalando-datasetsgen)",
        "sidebar_header": "Options de Génération",
        "language_select": "Langue",
        "generation_mode_radio": "Mode de génération :",
        "mode_class": "Générer par classe",
        "mode_dataset": "Générer un dataset complet",
        "select_class": "Choisir la classe :",
        "num_images_input": "Nombre d'images à générer :",
        "num_images_per_class": "Nombre d'images par classe :",
        "generate_button": "Lancer la génération",
        "generation_in_progress": "Génération en cours...",
        "generating_class_info": "Génération de {num_images} images pour la classe '{class_name}'...",
        "generating_dataset_info": "Génération d'un dataset complet de {num_images} images ({num_images_per_class} par classe)...",
        "preview_header": "Aperçu des images générées",
        "preview_caption": "Aperçu {idx}",
        "download_button": "Télécharger le fichier ZIP",
        "generation_success": "Génération terminée et images prêtes pour le téléchargement !",
        "model_not_found_error": "Gestion des erreurs : Le fichier du modèle n'a pas pu être trouvé localement.",
        "instructions_header": "Instructions :",
        "instructions_1": "1. Choisissez votre mode de génération.",
        "instructions_2": "2. Entrez le nombre d'images que vous souhaitez créer.",
        "instructions_3": "3. Cliquez sur 'Lancer la génération'.",
    }
}

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

class Generateur(nn.Module):
    def __init__(self, z_dim, ngf, num_classes):
        super().__init__()
        self.main = nn.Sequential(
            nn.ConvTranspose2d(z_dim + num_classes, ngf * 8, 4, 1, 0, bias=False),
            nn.BatchNorm2d(ngf * 8),
            nn.ReLU(True),
            nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 4),
            nn.ReLU(True),
            nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 2),
            nn.ReLU(True),
            nn.ConvTranspose2d(ngf * 2, 1, 4, 2, 1, bias=False),
            nn.Tanh()
        )
        self.z_dim = z_dim
        self.num_classes = num_classes

    def forward(self, x, labels):
        x = x.view(-1, self.z_dim, 1, 1)
        labels_reshaped = F.one_hot(labels, self.num_classes).float().view(-1, self.num_classes, 1, 1)
        x = torch.cat([x, labels_reshaped], 1)
        return self.main(x)

Z_DIM = 100
NGF = 64
NUM_CLASSES = 10
IMAGE_SIZE = 32
MODEL_FILE = os.path.join(os.path.dirname(__file__), "Raygan-zalando_datasetsgen.pth")

class_names = [
    "T-shirt/top", "Trouser", "Pullover", "Dress", "Coat",
    "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"
]
class_to_idx = {name: i for i, name in enumerate(class_names)}

@st.cache_resource
def load_model_from_local():
    try:
        model = Generateur(Z_DIM, NGF, NUM_CLASSES).to(device)
        full_state_dict = torch.load(MODEL_FILE, map_location=device)
        filtered_state_dict = {
            key: value for key, value in full_state_dict.items() if key.startswith('main')
        }
        model.load_state_dict(filtered_state_dict)
        model.eval()
        return model
    except Exception as e:
        st.error(st.session_state.lang_texts["model_not_found_error"])
        st.error(f"Détails de l'erreur : {e}")
        return None

if "lang" not in st.session_state:
    st.session_state.lang = "en"
    st.session_state.lang_texts = TEXTS["en"]

lang_selection = st.sidebar.selectbox(st.session_state.lang_texts["language_select"], ["English", "Français"])
if lang_selection == "Français":
    st.session_state.lang = "fr"
    st.session_state.lang_texts = TEXTS["fr"]
else:
    st.session_state.lang = "en"
    st.session_state.lang_texts = TEXTS["en"]

st.title(st.session_state.lang_texts["title"])
st.markdown(st.session_state.lang_texts["description"])
st.markdown(st.session_state.lang_texts["model_source"])
st.sidebar.header(st.session_state.lang_texts["sidebar_header"])

generation_mode = st.sidebar.radio(
    st.session_state.lang_texts["generation_mode_radio"],
    (st.session_state.lang_texts["mode_class"], st.session_state.lang_texts["mode_dataset"])
)

if generation_mode == st.session_state.lang_texts["mode_class"]:
    selected_class_name = st.sidebar.selectbox(st.session_state.lang_texts["select_class"], options=class_names)
    num_images_to_generate = st.sidebar.number_input(st.session_state.lang_texts["num_images_input"], min_value=1, max_value=1000, value=1, step=1)
else:
    num_images_per_class = st.sidebar.number_input(st.session_state.lang_texts["num_images_per_class"], min_value=1, max_value=100, value=3, step=1)
    num_images_to_generate = num_images_per_class * NUM_CLASSES

generate_button = st.sidebar.button(st.session_state.lang_texts["generate_button"])

if generate_button:
    model = load_model_from_local()
    if model is not None:
        st.subheader(st.session_state.lang_texts["generation_in_progress"])
        all_generated_images = []
        progress_bar = st.progress(0)
        zip_buffer = io.BytesIO()
        with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zipf:
            if generation_mode == st.session_state.lang_texts["mode_class"]:
                selected_class_idx = class_to_idx[selected_class_name]
                st.info(st.session_state.lang_texts["generating_class_info"].format(num_images=num_images_to_generate, class_name=selected_class_name))
                for i in range(num_images_to_generate):
                    noise = torch.randn(1, Z_DIM, device=device)
                    labels = torch.tensor([selected_class_idx]).to(device)
                    with torch.no_grad():
                        generated_image = model(noise, labels)
                    image_tensor = (generated_image.cpu().squeeze() + 1) / 2
                    image_pil = Image.fromarray((image_tensor.numpy() * 255).astype(np.uint8))
                    all_generated_images.append(image_pil)
                    img_byte_arr = io.BytesIO()
                    image_pil.save(img_byte_arr, format='PNG')
                    zipf.writestr(f"generated_images/{selected_class_name.replace('/', '_')}_{i+1}.png", img_byte_arr.getvalue())
                    progress_bar.progress((i + 1) / num_images_to_generate)
            else:
                st.info(st.session_state.lang_texts["generating_dataset_info"].format(num_images=num_images_to_generate, num_images_per_class=num_images_per_class))
                total_generated = 0
                for class_idx, class_name in enumerate(class_names):
                    for i in range(num_images_per_class):
                        noise = torch.randn(1, Z_DIM, device=device)
                        labels = torch.tensor([class_idx]).to(device)
                        with torch.no_grad():
                            generated_image = model(noise, labels)
                        image_tensor = (generated_image.cpu().squeeze() + 1) / 2
                        image_pil = Image.fromarray((image_tensor.numpy() * 255).astype(np.uint8))
                        if i < 3:
                            all_generated_images.append(image_pil)
                        img_byte_arr = io.BytesIO()
                        image_pil.save(img_byte_arr, format='PNG')
                        zipf.writestr(f"generated_dataset/{class_name}/{class_name.replace('/', '_')}_{i+1}.png", img_byte_arr.getvalue())
                        total_generated += 1
                        progress_bar.progress(total_generated / num_images_to_generate)
        st.subheader(st.session_state.lang_texts["preview_header"])
        cols = st.columns(3)
        for idx, img in enumerate(all_generated_images):
            with cols[idx % 3]:
                st.image(img, caption=st.session_state.lang_texts["preview_caption"].format(idx=idx+1), use_container_width=True)
        download_file_name = f"fashion_mnist_synthetique_{generation_mode.replace(' ', '_')}.zip"
        st.download_button(
            label=st.session_state.lang_texts["download_button"],
            data=zip_buffer.getvalue(),
            file_name=download_file_name,
            mime="application/zip"
        )
        st.success(st.session_state.lang_texts["generation_success"])
    else:
        st.info(st.session_state.lang_texts["model_not_found_error"])

st.sidebar.markdown("---")
st.sidebar.markdown(f"**{st.session_state.lang_texts['instructions_header']}**")
st.sidebar.markdown(st.session_state.lang_texts["instructions_1"])
st.sidebar.markdown(st.session_state.lang_texts["instructions_2"])
st.sidebar.markdown(st.session_state.lang_texts["instructions_3"])