RChaubey16's picture
Update app.py
7ff6802 verified
import streamlit as st
import requests
import re
from bs4 import BeautifulSoup
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document
import chromadb
from sentence_transformers import SentenceTransformer
import google.generativeai as genai
# Page configuration
st.set_page_config(layout="wide")
# Initialize Gemini API
genai.configure(api_key="AIzaSyAxUd2tS-qj9C7frYuHRsv92tziXHgIvLo")
# Initialize ChromaDB
CHROMA_PATH = "chroma_db"
chroma_client = chromadb.PersistentClient(path=CHROMA_PATH)
# Initialize session state
if 'scraped' not in st.session_state:
st.session_state.scraped = False
if 'collection_name' not in st.session_state:
st.session_state.collection_name = "default_collection"
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
# Initialize embedding model
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
def clean_text(text):
return re.sub(r'\s+', ' ', re.sub(r'http\S+', '', text)).strip()
def split_content_into_chunks(content):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200, length_function=len)
return text_splitter.split_documents([Document(page_content=content)])
def add_chunks_to_db(chunks, collection_name):
collection = chroma_client.get_or_create_collection(name=collection_name)
documents = [chunk.page_content for chunk in chunks]
embeddings = embedding_model.encode(documents, convert_to_list=True)
collection.upsert(documents=documents, ids=[f"ID{i}" for i in range(len(chunks))], embeddings=embeddings)
def scrape_text(url):
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
text = clean_text(soup.get_text())
chunks = split_content_into_chunks(text)
add_chunks_to_db(chunks, st.session_state.collection_name)
st.session_state.scraped = True
return "Scraping and processing complete. You can now ask questions!"
except requests.exceptions.RequestException as e:
return f"Error scraping {url}: {e}"
def ask_question(query, collection_name):
collection = chroma_client.get_or_create_collection(name=collection_name)
query_embedding = embedding_model.encode(query, convert_to_list=True)
results = collection.query(query_embeddings=[query_embedding], n_results=2)
top_chunks = results.get("documents", [[]])[0]
system_prompt = f"""
You are a helpful assistant. Answer only from the provided context.
If you lack information, say: "I don't have enough information to answer that question."
Context:
{str(top_chunks)}
"""
model = genai.GenerativeModel('gemini-2.0-flash')
response = model.generate_content(system_prompt + "\nUser Query: " + query)
return response.text
# Sidebar
with st.sidebar:
st.header("Database Management")
if st.button("Clear Chat History"):
st.session_state.chat_history = []
st.rerun()
st.header("Step 1: Scrape a Website")
url = st.text_input("Enter URL:")
if url and st.button("Scrape & Process"):
with st.spinner("Scraping..."):
st.success(scrape_text(url))
# Main content
st.title("Web Scraper & Q&A Chatbot")
if st.session_state.scraped:
st.subheader("Step 2: Ask Questions")
for message in st.session_state.chat_history:
with st.chat_message(message["role"]):
st.write(message["content"])
user_query = st.chat_input("Ask your question here")
if user_query:
st.session_state.chat_history.append({"role": "user", "content": user_query})
with st.spinner("Searching..."):
answer = ask_question(user_query, st.session_state.collection_name)
st.session_state.chat_history.append({"role": "assistant", "content": answer})
# Limit chat history to 6 messages
st.session_state.chat_history = st.session_state.chat_history[-6:]
st.rerun()
else:
st.info("Please scrape a website first.")