Spaces:
Sleeping
Sleeping
Create gradio_app.py
Browse files- gradio_app.py +383 -0
gradio_app.py
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: UTF-8 -*-
|
2 |
+
import os
|
3 |
+
os.environ['HYDRA_FULL_ERROR']='1'
|
4 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
5 |
+
|
6 |
+
import argparse
|
7 |
+
import shutil
|
8 |
+
import uuid
|
9 |
+
import os
|
10 |
+
import numpy as np
|
11 |
+
from tqdm import tqdm
|
12 |
+
import cv2
|
13 |
+
from rich.progress import track
|
14 |
+
import tyro
|
15 |
+
|
16 |
+
|
17 |
+
from PIL import Image
|
18 |
+
import time
|
19 |
+
import torch
|
20 |
+
import torch.nn.functional as F
|
21 |
+
from torch import nn
|
22 |
+
import imageio
|
23 |
+
from pydub import AudioSegment
|
24 |
+
from pykalman import KalmanFilter
|
25 |
+
|
26 |
+
|
27 |
+
from src.config.argument_config import ArgumentConfig
|
28 |
+
from src.config.inference_config import InferenceConfig
|
29 |
+
from src.config.crop_config import CropConfig
|
30 |
+
from src.live_portrait_pipeline import LivePortraitPipeline
|
31 |
+
from src.utils.camera import get_rotation_matrix
|
32 |
+
from dataset_process import audio
|
33 |
+
|
34 |
+
from dataset_process.croper import Croper
|
35 |
+
|
36 |
+
|
37 |
+
def parse_audio_length(audio_length, sr, fps):
|
38 |
+
bit_per_frames = sr / fps
|
39 |
+
num_frames = int(audio_length / bit_per_frames)
|
40 |
+
audio_length = int(num_frames * bit_per_frames)
|
41 |
+
return audio_length, num_frames
|
42 |
+
|
43 |
+
def crop_pad_audio(wav, audio_length):
|
44 |
+
if len(wav) > audio_length:
|
45 |
+
wav = wav[:audio_length]
|
46 |
+
elif len(wav) < audio_length:
|
47 |
+
wav = np.pad(wav, [0, audio_length - len(wav)], mode='constant', constant_values=0)
|
48 |
+
return wav
|
49 |
+
|
50 |
+
class Conv2d(nn.Module):
|
51 |
+
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, use_act=True, *args, **kwargs):
|
52 |
+
super().__init__(*args, **kwargs)
|
53 |
+
self.conv_block = nn.Sequential(
|
54 |
+
nn.Conv2d(cin, cout, kernel_size, stride, padding),
|
55 |
+
nn.BatchNorm2d(cout)
|
56 |
+
)
|
57 |
+
self.act = nn.ReLU()
|
58 |
+
self.residual = residual
|
59 |
+
self.use_act = use_act
|
60 |
+
|
61 |
+
def forward(self, x):
|
62 |
+
out = self.conv_block(x)
|
63 |
+
if self.residual:
|
64 |
+
out += x
|
65 |
+
|
66 |
+
if self.use_act:
|
67 |
+
return self.act(out)
|
68 |
+
else:
|
69 |
+
return out
|
70 |
+
|
71 |
+
class AudioEncoder(nn.Module):
|
72 |
+
def __init__(self, wav2lip_checkpoint, device):
|
73 |
+
super(AudioEncoder, self).__init__()
|
74 |
+
|
75 |
+
self.audio_encoder = nn.Sequential(
|
76 |
+
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
|
77 |
+
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
78 |
+
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
79 |
+
|
80 |
+
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
|
81 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
82 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
83 |
+
|
84 |
+
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
|
85 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
86 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
87 |
+
|
88 |
+
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
|
89 |
+
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
90 |
+
|
91 |
+
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
|
92 |
+
Conv2d(512, 512, kernel_size=1, stride=1, padding=0),)
|
93 |
+
|
94 |
+
#### load the pre-trained audio_encoder
|
95 |
+
wav2lip_state_dict = torch.load(wav2lip_checkpoint, map_location=torch.device(device))['state_dict']
|
96 |
+
state_dict = self.audio_encoder.state_dict()
|
97 |
+
|
98 |
+
for k,v in wav2lip_state_dict.items():
|
99 |
+
if 'audio_encoder' in k:
|
100 |
+
state_dict[k.replace('module.audio_encoder.', '')] = v
|
101 |
+
self.audio_encoder.load_state_dict(state_dict)
|
102 |
+
|
103 |
+
def forward(self, audio_sequences):
|
104 |
+
B = audio_sequences.size(0)
|
105 |
+
|
106 |
+
audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
|
107 |
+
|
108 |
+
audio_embedding = self.audio_encoder(audio_sequences) # B, 512, 1, 1
|
109 |
+
dim = audio_embedding.shape[1]
|
110 |
+
audio_embedding = audio_embedding.reshape((B, -1, dim, 1, 1))
|
111 |
+
|
112 |
+
return audio_embedding.squeeze(-1).squeeze(-1) #B seq_len+1 512
|
113 |
+
|
114 |
+
def partial_fields(target_class, kwargs):
|
115 |
+
return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})
|
116 |
+
|
117 |
+
def dct2device(dct: dict, device):
|
118 |
+
for key in dct:
|
119 |
+
dct[key] = torch.tensor(dct[key]).to(device)
|
120 |
+
return dct
|
121 |
+
|
122 |
+
def save_video_with_watermark(video, audio, save_path):
|
123 |
+
temp_file = str(uuid.uuid4())+'.mp4'
|
124 |
+
cmd = r'ffmpeg -y -i "%s" -i "%s" -vcodec copy "%s"' % (video, audio, temp_file)
|
125 |
+
os.system(cmd)
|
126 |
+
shutil.move(temp_file, save_path)
|
127 |
+
|
128 |
+
class Inferencer(object):
|
129 |
+
def __init__(self):
|
130 |
+
st=time.time()
|
131 |
+
print('#'*25+'Start initialization'+'#'*25)
|
132 |
+
self.device = 'cuda'
|
133 |
+
|
134 |
+
from model import get_model
|
135 |
+
self.point_diffusion = get_model()
|
136 |
+
ckpt = torch.load('KDTalker.pth')
|
137 |
+
|
138 |
+
self.point_diffusion.load_state_dict(ckpt['model'])
|
139 |
+
self.point_diffusion.eval()
|
140 |
+
self.point_diffusion.to(self.device)
|
141 |
+
|
142 |
+
lm_croper_checkpoint = 'ckpts/shape_predictor_68_face_landmarks.dat'
|
143 |
+
self.croper = Croper(lm_croper_checkpoint)
|
144 |
+
|
145 |
+
self.norm_info = dict(np.load('dataset_process/norm.npz'))
|
146 |
+
|
147 |
+
wav2lip_checkpoint = 'ckpts/wav2lip.pth'
|
148 |
+
self.wav2lip_model = AudioEncoder(wav2lip_checkpoint, 'cuda')
|
149 |
+
self.wav2lip_model.cuda()
|
150 |
+
self.wav2lip_model.eval()
|
151 |
+
|
152 |
+
# set tyro theme
|
153 |
+
tyro.extras.set_accent_color("bright_cyan")
|
154 |
+
args = tyro.cli(ArgumentConfig)
|
155 |
+
|
156 |
+
# specify configs for inference
|
157 |
+
self.inf_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig
|
158 |
+
self.crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig
|
159 |
+
|
160 |
+
self.live_portrait_pipeline = LivePortraitPipeline(inference_cfg=self.inf_cfg, crop_cfg=self.crop_cfg)
|
161 |
+
|
162 |
+
def _norm(self, data_dict):
|
163 |
+
for k in data_dict.keys():
|
164 |
+
if k in ['yaw', 'pitch', 'roll', 't', 'exp', 'scale', 'kp', ]:
|
165 |
+
v=data_dict[k]
|
166 |
+
data_dict[k] = (v - self.norm_info[k+'_mean'])/self.norm_info[k+'_std']
|
167 |
+
return data_dict
|
168 |
+
|
169 |
+
def _denorm(self, data_dict):
|
170 |
+
for k in data_dict.keys():
|
171 |
+
if k in ['yaw', 'pitch', 'roll', 't', 'exp', 'scale', 'kp']:
|
172 |
+
v=data_dict[k]
|
173 |
+
data_dict[k] = v * self.norm_info[k+'_std'] + self.norm_info[k+'_mean']
|
174 |
+
return data_dict
|
175 |
+
|
176 |
+
def output_to_dict(self, data):
|
177 |
+
output = {}
|
178 |
+
output['scale'] = data[:, 0]
|
179 |
+
output['yaw'] = data[:, 1, None]
|
180 |
+
output['pitch'] = data[:, 2, None]
|
181 |
+
output['roll'] = data[:, 3, None]
|
182 |
+
output['t'] = data[:, 4:7]
|
183 |
+
output['exp'] = data[:, 7:]
|
184 |
+
return output
|
185 |
+
|
186 |
+
def extract_mel_from_audio(self, audio_file_path):
|
187 |
+
syncnet_mel_step_size = 16
|
188 |
+
fps = 25
|
189 |
+
wav = audio.load_wav(audio_file_path, 16000)
|
190 |
+
wav_length, num_frames = parse_audio_length(len(wav), 16000, 25)
|
191 |
+
wav = crop_pad_audio(wav, wav_length)
|
192 |
+
orig_mel = audio.melspectrogram(wav).T
|
193 |
+
spec = orig_mel.copy()
|
194 |
+
indiv_mels = []
|
195 |
+
|
196 |
+
for i in tqdm(range(num_frames), 'mel:'):
|
197 |
+
start_frame_num = i - 2
|
198 |
+
start_idx = int(80. * (start_frame_num / float(fps)))
|
199 |
+
end_idx = start_idx + syncnet_mel_step_size
|
200 |
+
seq = list(range(start_idx, end_idx))
|
201 |
+
seq = [min(max(item, 0), orig_mel.shape[0] - 1) for item in seq]
|
202 |
+
m = spec[seq, :]
|
203 |
+
indiv_mels.append(m.T)
|
204 |
+
indiv_mels = np.asarray(indiv_mels) # T 80 16
|
205 |
+
return indiv_mels
|
206 |
+
|
207 |
+
def extract_wav2lip_from_audio(self, audio_file_path):
|
208 |
+
asd_mel = self.extract_mel_from_audio(audio_file_path)
|
209 |
+
asd_mel = torch.FloatTensor(asd_mel).cuda().unsqueeze(0).unsqueeze(2)
|
210 |
+
with torch.no_grad():
|
211 |
+
hidden = self.wav2lip_model(asd_mel)
|
212 |
+
return hidden[0].cpu().detach().numpy()
|
213 |
+
|
214 |
+
def headpose_pred_to_degree(self, pred):
|
215 |
+
device = pred.device
|
216 |
+
idx_tensor = [idx for idx in range(66)]
|
217 |
+
idx_tensor = torch.FloatTensor(idx_tensor).to(device)
|
218 |
+
pred = F.softmax(pred)
|
219 |
+
degree = torch.sum(pred * idx_tensor, 1) * 3 - 99
|
220 |
+
return degree
|
221 |
+
|
222 |
+
@torch.no_grad()
|
223 |
+
def generate_with_audio_img(self, image_path, audio_path, save_path):
|
224 |
+
image = np.array(Image.open(image_path).convert('RGB'))
|
225 |
+
cropped_image, crop, quad = self.croper.crop([image], still=False, xsize=512)
|
226 |
+
input_image = cv2.resize(cropped_image[0], (256, 256))
|
227 |
+
|
228 |
+
I_s = torch.FloatTensor(input_image.transpose((2, 0, 1))).unsqueeze(0).cuda() / 255
|
229 |
+
|
230 |
+
x_s_info = self.live_portrait_pipeline.live_portrait_wrapper.get_kp_info(I_s)
|
231 |
+
x_c_s = x_s_info['kp'].reshape(1, 21, -1)
|
232 |
+
R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
|
233 |
+
f_s = self.live_portrait_pipeline.live_portrait_wrapper.extract_feature_3d(I_s)
|
234 |
+
x_s = self.live_portrait_pipeline.live_portrait_wrapper.transform_keypoint(x_s_info)
|
235 |
+
|
236 |
+
######## process driving info ########
|
237 |
+
kp_info = {}
|
238 |
+
for k in x_s_info.keys():
|
239 |
+
kp_info[k] = x_s_info[k].cpu().numpy()
|
240 |
+
|
241 |
+
kp_info = self._norm(kp_info)
|
242 |
+
|
243 |
+
ori_kp = torch.cat([torch.zeros([1, 7]), torch.Tensor(kp_info['kp'])], -1).cuda()
|
244 |
+
|
245 |
+
input_x = np.concatenate([kp_info[k] for k in ['scale', 'yaw', 'pitch', 'roll', 't', 'exp']], 1)
|
246 |
+
input_x = np.expand_dims(input_x, -1)
|
247 |
+
input_x = np.expand_dims(input_x, 0)
|
248 |
+
input_x = np.concatenate([input_x, input_x, input_x], -1)
|
249 |
+
|
250 |
+
aud_feat = self.extract_wav2lip_from_audio(audio_path)
|
251 |
+
|
252 |
+
sample_frame = 64
|
253 |
+
padding_size = (sample_frame - aud_feat.shape[0] % sample_frame) % sample_frame
|
254 |
+
|
255 |
+
if padding_size > 0:
|
256 |
+
aud_feat = np.concatenate((aud_feat, aud_feat[:padding_size, :]), axis=0)
|
257 |
+
else:
|
258 |
+
aud_feat = aud_feat
|
259 |
+
|
260 |
+
outputs = [input_x]
|
261 |
+
|
262 |
+
sample_frame = 64
|
263 |
+
for i in range(0, aud_feat.shape[0] - 1, sample_frame):
|
264 |
+
input_mel = torch.Tensor(aud_feat[i: i + sample_frame]).unsqueeze(0).cuda()
|
265 |
+
kp0 = torch.Tensor(outputs[-1])[:, -1].cuda()
|
266 |
+
pred_kp = self.point_diffusion.forward_sample(70, ref_kps=kp0, ori_kps=ori_kp, aud_feat=input_mel,
|
267 |
+
scheduler='ddim', num_inference_steps=50)
|
268 |
+
outputs.append(pred_kp.cpu().numpy())
|
269 |
+
|
270 |
+
outputs = np.mean(np.concatenate(outputs, 1)[0, 1:aud_feat.shape[0] - padding_size + 1], -1)
|
271 |
+
output_dict = self.output_to_dict(outputs)
|
272 |
+
output_dict = self._denorm(output_dict)
|
273 |
+
|
274 |
+
num_frame = output_dict['yaw'].shape[0]
|
275 |
+
x_d_info = {}
|
276 |
+
for key in output_dict:
|
277 |
+
x_d_info[key] = torch.tensor(output_dict[key]).cuda()
|
278 |
+
|
279 |
+
# smooth
|
280 |
+
def smooth(sequence, n_dim_state=1):
|
281 |
+
kf = KalmanFilter(initial_state_mean=sequence[0],
|
282 |
+
transition_covariance=0.05 * np.eye(n_dim_state),
|
283 |
+
observation_covariance=0.001 * np.eye(n_dim_state))
|
284 |
+
state_means, _ = kf.smooth(sequence)
|
285 |
+
return state_means
|
286 |
+
|
287 |
+
yaw_data = x_d_info['yaw'].cpu().numpy()
|
288 |
+
pitch_data = x_d_info['pitch'].cpu().numpy()
|
289 |
+
roll_data = x_d_info['roll'].cpu().numpy()
|
290 |
+
t_data = x_d_info['t'].cpu().numpy()
|
291 |
+
exp_data = x_d_info['exp'].cpu().numpy()
|
292 |
+
|
293 |
+
smoothed_pitch = smooth(pitch_data, n_dim_state=1)
|
294 |
+
smoothed_yaw = smooth(yaw_data, n_dim_state=1)
|
295 |
+
smoothed_roll = smooth(roll_data, n_dim_state=1)
|
296 |
+
smoothed_t = smooth(t_data, n_dim_state=3)
|
297 |
+
smoothed_exp = smooth(exp_data, n_dim_state=63)
|
298 |
+
|
299 |
+
x_d_info['pitch'] = torch.Tensor(smoothed_pitch).cuda()
|
300 |
+
x_d_info['yaw'] = torch.Tensor(smoothed_yaw).cuda()
|
301 |
+
x_d_info['roll'] = torch.Tensor(smoothed_roll).cuda()
|
302 |
+
x_d_info['t'] = torch.Tensor(smoothed_t).cuda()
|
303 |
+
x_d_info['exp'] = torch.Tensor(smoothed_exp).cuda()
|
304 |
+
|
305 |
+
template_dct = {'motion': [], 'c_d_eyes_lst': [], 'c_d_lip_lst': []}
|
306 |
+
for i in track(range(num_frame), description='Making motion templates...', total=num_frame):
|
307 |
+
x_d_i_info = x_d_info
|
308 |
+
R_d_i = get_rotation_matrix(x_d_i_info['pitch'][i], x_d_i_info['yaw'][i], x_d_i_info['roll'][i])
|
309 |
+
|
310 |
+
item_dct = {
|
311 |
+
'scale': x_d_i_info['scale'][i].cpu().numpy().astype(np.float32),
|
312 |
+
'R_d': R_d_i.cpu().numpy().astype(np.float32),
|
313 |
+
'exp': x_d_i_info['exp'][i].reshape(1, 21, -1).cpu().numpy().astype(np.float32),
|
314 |
+
't': x_d_i_info['t'][i].cpu().numpy().astype(np.float32),
|
315 |
+
}
|
316 |
+
|
317 |
+
template_dct['motion'].append(item_dct)
|
318 |
+
|
319 |
+
I_p_lst = []
|
320 |
+
R_d_0, x_d_0_info = None, None
|
321 |
+
|
322 |
+
for i in track(range(num_frame), description='🚀Animating...', total=num_frame):
|
323 |
+
x_d_i_info = template_dct['motion'][i]
|
324 |
+
for key in x_d_i_info:
|
325 |
+
x_d_i_info[key] = torch.tensor(x_d_i_info[key]).cuda()
|
326 |
+
R_d_i = x_d_i_info['R_d']
|
327 |
+
|
328 |
+
if i == 0:
|
329 |
+
R_d_0 = R_d_i
|
330 |
+
x_d_0_info = x_d_i_info
|
331 |
+
|
332 |
+
if self.inf_cfg.flag_relative_motion:
|
333 |
+
R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s
|
334 |
+
delta_new = x_s_info['exp'].reshape(1, 21, -1) + (x_d_i_info['exp'] - x_d_0_info['exp'])
|
335 |
+
scale_new = x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
|
336 |
+
t_new = x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
|
337 |
+
else:
|
338 |
+
R_new = R_d_i
|
339 |
+
delta_new = x_d_i_info['exp']
|
340 |
+
scale_new = x_s_info['scale']
|
341 |
+
t_new = x_d_i_info['t']
|
342 |
+
|
343 |
+
t_new[..., 2].fill_(0)
|
344 |
+
x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new
|
345 |
+
|
346 |
+
out = self.live_portrait_pipeline.live_portrait_wrapper.warp_decode(f_s, x_s, x_d_i_new)
|
347 |
+
I_p_i = self.live_portrait_pipeline.live_portrait_wrapper.parse_output(out['out'])[0]
|
348 |
+
I_p_lst.append(I_p_i)
|
349 |
+
|
350 |
+
video_name = save_path.split('/')[-1]
|
351 |
+
video_save_dir = os.path.dirname(save_path)
|
352 |
+
path = os.path.join(video_save_dir, 'temp_' + video_name)
|
353 |
+
|
354 |
+
imageio.mimsave(path, I_p_lst, fps=float(25))
|
355 |
+
|
356 |
+
audio_name = audio_path.split('/')[-1]
|
357 |
+
new_audio_path = os.path.join(video_save_dir, audio_name)
|
358 |
+
start_time = 0
|
359 |
+
sound = AudioSegment.from_file(audio_path)
|
360 |
+
end_time = start_time + num_frame * 1 / 25 * 1000
|
361 |
+
word1 = sound.set_frame_rate(16000)
|
362 |
+
word = word1[start_time:end_time]
|
363 |
+
word.export(new_audio_path, format="wav")
|
364 |
+
|
365 |
+
save_video_with_watermark(path, new_audio_path, save_path, watermark=False)
|
366 |
+
print(f'The generated video is named {video_save_dir}/{video_name}')
|
367 |
+
|
368 |
+
os.remove(path)
|
369 |
+
os.remove(new_audio_path)
|
370 |
+
|
371 |
+
|
372 |
+
if __name__ == '__main__':
|
373 |
+
parser = argparse.ArgumentParser()
|
374 |
+
parser.add_argument("-source_image", type=str, default="example/source_image/WDA_BenCardin1_000.png",
|
375 |
+
help="source image")
|
376 |
+
parser.add_argument("-driven_audio", type=str, default="example/driven_audio/WDA_BenCardin1_000.wav",
|
377 |
+
help="driving audio")
|
378 |
+
parser.add_argument("-output", type=str, default="results/output.mp4", help="output video file name", )
|
379 |
+
|
380 |
+
args = parser.parse_args()
|
381 |
+
|
382 |
+
Infer = Inferencer()
|
383 |
+
Infer.generate_with_audio_img(args.source_image, args.driven_audio, args.output)
|