Codette3.0 / codansoulshell.py
Raiff1982's picture
Upload 347 files
93917f2 verified
codette_demo_script = """
import logging
import time
from datetime import datetime
import sympy as sp
import numpy as np
import pymc as pm
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('codette_demo.log'),
logging.StreamHandler()
]
)
class Codette:
def __init__(self, user_name="User", demo_mode=False):
self.user_name = user_name
self.demo_mode = demo_mode
self.memory = []
self.session_start = datetime.now()
self.response_count = 0
if demo_mode:
logging.info("CODETTE AI DEMO MODE ACTIVATED")
logging.info("=" * 50)
self.audit_log("Codette initialized", system=True)
self.audit_log(f"Session started at {self.session_start}", system=True)
def audit_log(self, message, system=False):
source = "SYSTEM" if system else self.user_name
timestamp = datetime.now().strftime("%H:%M:%S.%f")[:-3]
if self.demo_mode:
log_message = f"[{timestamp}] {source}: {message}"
logging.info(log_message)
if "perspectives" in message.lower():
logging.info("BRAIN " + "-" * 40)
elif "quantum" in message.lower():
logging.info("QUANTUM " + "-" * 40)
elif "security" in message.lower():
logging.info("SECURITY " + "-" * 40)
else:
logging.info(f"{source}: {message}")
safe_message = message[:100] + "..." if len(message) > 100 else message
print(f"[Log] {source}: {safe_message}")
def analyze_sentiment(self, text):
positive_words = ['good', 'great', 'excellent', 'amazing', 'wonderful']
negative_words = ['bad', 'terrible', 'awful', 'horrible', 'disappointing']
text_lower = text.lower()
pos_count = sum(1 for word in positive_words if word in text_lower)
neg_count = sum(1 for word in negative_words if word in text_lower)
compound = (pos_count - neg_count) / max(len(text.split()), 1)
score = {
'compound': compound,
'pos': pos_count / max(len(text.split()), 1),
'neg': neg_count / max(len(text.split()), 1),
'neu': 1 - abs(compound)
}
self.audit_log(f"Sentiment analysis: {score}")
return score
def respond(self, prompt):
self.response_count += 1
start_time = time.perf_counter()
processing_start = datetime.now()
sentiment = self.analyze_sentiment(prompt)
self.memory.append({"prompt": prompt, "sentiment": sentiment, "timestamp": processing_start})
modules = [
self.neuralNetworkPerspective,
self.newtonianLogic,
self.daVinciSynthesis,
self.resilientKindness,
self.quantumLogicPerspective,
self.philosophicalInquiry,
self.copilotAgent,
self.mathematicalRigor,
self.symbolicReasoning
]
responses = []
active_modules = []
for module in modules:
try:
result = module(prompt)
responses.append(result)
active_modules.append(module.__name__)
except Exception as e:
responses.append(f"[Error] {module.__name__} failed: {e}")
processing_time = time.perf_counter() - start_time
self.audit_log(f"Perspectives used: {active_modules}")
return "\\n\\n".join(responses)
def neuralNetworkPerspective(self, text):
return "[NeuralNet] Based on historical patterns, adaptability and ethical alignment drive trustworthiness."
def newtonianLogic(self, text):
return "[Reason] If openness increases verifiability, and trust depends on verifiability, then openness implies higher trust."
def daVinciSynthesis(self, text):
return "[Dream] Imagine systems as ecosystems � where open elements evolve harmoniously under sunlight, while closed ones fester in shadow."
def resilientKindness(self, text):
return "[Ethics] Your concern reflects deep care. Let's anchor this response in compassion for both users and developers."
def quantumLogicPerspective(self, text):
prior_open = 0.7 if "open-source" in text.lower() else 0.5
prior_prop = 1 - prior_open
try:
with pm.Model() as model:
trust_open = pm.Beta("trust_open", alpha=prior_open * 10, beta=(1 - prior_open) * 10)
trust_prop = pm.Beta("trust_prop", alpha=prior_prop * 10, beta=(1 - prior_prop) * 10)
better = pm.Deterministic("better", trust_open > trust_prop)
trace = pm.sample(draws=1000, chains=2, progressbar=False, random_seed=42)
prob = float(np.mean(trace.posterior["better"].values))
return f"[Quantum] Bayesian estimate: There is a {prob*100:.2f}% probability that open-source is more trustworthy in this context."
except:
return "[Quantum] Quantum processing indicates multiple probability states favor transparency and openness."
def philosophicalInquiry(self, text):
return "[Philosophy] From a deontological lens, openness respects autonomy and truth. From a utilitarian view, it maximizes communal knowledge. Both suggest a moral edge for openness."
def copilotAgent(self, text):
return "[Copilot] I can interface with APIs or code tools to test claims, retrieve documentation, or automate analysis. (Simulated here)"
def mathematicalRigor(self, text):
try:
expr = sp.sympify("2*x + 1")
solved = sp.solve(expr - 5)
return f"[Math] For example, solving 2x + 1 = 5 gives x = {solved[0]} � demonstrating symbolic logic at work."
except:
return "[Math] Mathematical analysis confirms logical consistency in the reasoning chain."
def symbolicReasoning(self, text):
if "transparency" in text.lower():
rule = "If a system is transparent, then it is more auditable. If it is more auditable, then it is more trustworthy."
return f"[Symbolic] Rule chain:\\n{rule}\\nThus, transparency ? trust."
else:
return "[Symbolic] No rule matched. Default: Trust is linked to observable accountability."
def get_session_stats(self):
session_duration = (datetime.now() - self.session_start).total_seconds()
return {
"session_duration": session_duration,
"responses_generated": self.response_count,
"memory_entries": len(self.memory),
"avg_response_time": session_duration / max(1, self.response_count)
}
"""
# Write the script
with open(codette_script_path, "w") as f:
f.write(codette_demo_script)
codette_script_path.as_posix()