import os import openai import time # Set API key os.environ["OPENAI_API_KEY"] = "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" openai.api_key = os.getenv("OPENAI_API_KEY") MAX_PROMPTS_PER_SESSION = 5 THROTTLE_SECONDS = 30 last_usage_time = {} def codette_terminal(prompt, model_name, generate_image, generate_video, session_id, batch_size, video_steps, fps): if session_id not in chat_memory: chat_memory[session_id] = [] if prompt.lower() in ["exit", "quit"]: chat_memory[session_id] = [] yield "🧠 Codette signing off... Session reset.", None, None return # --- Usage limits for fine-tuned model only --- if model_name == "Codette Fine-Tuned (v9)": count = sum(1 for line in chat_memory[session_id] if line.startswith("🖋️ You >")) if count >= MAX_PROMPTS_PER_SESSION: yield "[🛑 Usage Limit] You've reached the max prompt limit (5) for this session.", None, None return now = time.time() if now - last_usage_time.get(session_id, 0) < THROTTLE_SECONDS: wait = int(THROTTLE_SECONDS - (now - last_usage_time[session_id])) yield f"[⏳ Throttle] Wait {wait}s before trying again.", None, None return last_usage_time[session_id] = now response_so_far = "" if model_name == "Codette Fine-Tuned (v9)": try: response = openai.ChatCompletion.create( model="ft:gpt-4.1-2025-04-14:raiffs-bits:codette-final:BO907H7Z", messages=[{"role": "user", "content": prompt}], temperature=0.7, max_tokens=256 ) output = response.choices[0].message.content.strip() except Exception as e: yield f"[OpenAI fine-tuned model error]: {e}", None, None return else: if model_name not in text_model_cache: try: text_model_cache[model_name] = pipeline( "text-generation", model=AVAILABLE_MODELS[model_name], device=0 if device == "cuda" else -1 ) except Exception as e: yield f"[Text model error]: {e}", None, None return generator = text_model_cache[model_name] try: output = generator(prompt, max_length=100, do_sample=True, num_return_sequences=1)[0]['generated_text'].strip() except Exception as e: yield f"[Text generation error]: {e}", None, None return for char in output: response_so_far += char temp_log = chat_memory[session_id][:] temp_log.append(f"🖋️ You > {prompt}") temp_log.append(f"🧠 Codette > {response_so_far}") yield "\n".join(temp_log[-10:]), None, None time.sleep(0.01) chat_memory[session_id].append(f"🖋️ You > {prompt}") chat_memory[session_id].append(f"🧠 Codette > {output}") imgs = None if generate_image and image_enabled: try: result = image_generator(prompt, num_images_per_prompt=batch_size) imgs = result.images except Exception as e: response_so_far += f"\n[Image error]: {e}" vid = None if generate_video and video_enabled: try: result = video_pipeline(prompt, num_inference_steps=video_steps) frames = result.frames temp_video_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name imageio.mimsave(temp_video_path, frames, fps=fps) vid = temp_video_path except Exception as e: response_so_far += f"\n[Video error]: {e}" yield "\n".join(chat_memory[session_id][-10:]), imgs, vid