import gradio as gr import numpy as np import tempfile import imageio import torch from transformers import pipeline from diffusers import DiffusionPipeline # ---------- Settings ---------- AVAILABLE_MODELS = { "GPT-2 (small, fast)": "gpt2", "Falcon (TII UAE)": "tiiuae/falcon-7b-instruct", "Mistral (OpenAccess)": "mistralai/Mistral-7B-v0.1" } device = "cuda" if torch.cuda.is_available() else "cpu" text_model_cache = {} chat_memory = {} # ---------- Load Optional Models ---------- try: image_generator = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 if device == "cuda" else torch.float32) image_generator.to(device) image_enabled = True except Exception as e: print(f"[Image Load Error]: {e}") image_generator = None image_enabled = False try: video_pipeline = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16 if device == "cuda" else torch.float32) video_pipeline.to(device) video_enabled = True except Exception as e: print(f"[Video Load Error]: {e}") video_pipeline = None video_enabled = False # ---------- Core Logic ---------- def codette_terminal(prompt, model_name, generate_image, generate_video, session_id): if session_id not in chat_memory: chat_memory[session_id] = [] if prompt.lower() in ["exit", "quit"]: chat_memory[session_id] = [] return "🧠 Codette signing off... Session reset.", None, None # Load text model if not cached if model_name not in text_model_cache: try: text_model_cache[model_name] = pipeline("text-generation", model=AVAILABLE_MODELS[model_name], device=0 if device == "cuda" else -1) except Exception as e: return f"[Text model error]: {e}", None, None generator = text_model_cache[model_name] try: output = generator(prompt, max_length=100, do_sample=True, num_return_sequences=1) response = output[0]['generated_text'].strip() except Exception as e: response = f"[Text generation error]: {e}" chat_memory[session_id].append(f"🖋️ You > {prompt}") chat_memory[session_id].append(f"🧠 Codette > {response}") chat_log = "\n".join(chat_memory[session_id][-10:]) img = None if generate_image and image_enabled: try: img = image_generator(prompt).images[0] except Exception as e: chat_log += f"\n[Image error]: {e}" vid = None if generate_video and video_enabled: try: video_frames = video_pipeline(prompt, num_inference_steps=50).frames temp_video_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name imageio.mimsave(temp_video_path, video_frames, fps=8) vid = temp_video_path except Exception as e: chat_log += f"\n[Video error]: {e}" return chat_log, img, vid # ---------- Gradio App ---------- with gr.Blocks(title="Codette Terminal (Hugging Face Edition)") as demo: gr.Markdown("## 🧬 Codette Terminal\nA text + image + video AI powered by Hugging Face + Gradio. Type `'exit'` to reset the session.") session_id = gr.Textbox(value="session_default", visible=False) model_dropdown = gr.Dropdown(choices=list(AVAILABLE_MODELS.keys()), value="GPT-2 (small, fast)", label="Choose a Language Model") generate_image_toggle = gr.Checkbox(label="Also generate image?", value=False, interactive=image_enabled) generate_video_toggle = gr.Checkbox(label="Also generate video?", value=False, interactive=video_enabled) user_input = gr.Textbox(label="Your Prompt", placeholder="e.g. A robot dreaming on Mars", lines=1) output_text = gr.Textbox(label="Codette Output", lines=15, interactive=False) output_image = gr.Image(label="Generated Image") output_video = gr.Video(label="Generated Video") user_input.submit( codette_terminal, inputs=[user_input, model_dropdown, generate_image_toggle, generate_video_toggle, session_id], outputs=[output_text, output_image, output_video] ) if __name__ == "__main__": demo.launch()