File size: 2,471 Bytes
19a14ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

import numpy as np
import networkx as nx
import random
from typing import Dict, Any

class QuantumSpiderweb:
    """
    Simulates a cognitive spiderweb architecture with dimensions:
    Ψ (thought), τ (time), χ (speed), Φ (emotion), λ (space)
    """
    def __init__(self, node_count: int = 128):
        self.graph = nx.Graph()
        self.dimensions = ['Ψ', 'τ', 'χ', 'Φ', 'λ']
        self._init_nodes(node_count)
        self.entangled_state = {}

    def _init_nodes(self, count: int):
        for i in range(count):
            node_id = f"QNode_{i}"
            state = self._generate_state()
            self.graph.add_node(node_id, state=state)
            if i > 0:
                connection = f"QNode_{random.randint(0, i-1)}"
                self.graph.add_edge(node_id, connection, weight=random.random())

    def _generate_state(self) -> Dict[str, float]:
        return {dim: np.random.uniform(-1.0, 1.0) for dim in self.dimensions}

    def propagate_thought(self, origin: str, depth: int = 3):
        """
        Traverse the graph from a starting node, simulating pre-cognitive waveform
        """
        visited = set()
        stack = [(origin, 0)]
        traversal_output = []

        while stack:
            node, level = stack.pop()
            if node in visited or level > depth:
                continue
            visited.add(node)
            state = self.graph.nodes[node]['state']
            traversal_output.append((node, state))
            for neighbor in self.graph.neighbors(node):
                stack.append((neighbor, level + 1))
        return traversal_output

    def detect_tension(self, node: str) -> float:
        """
        Measures tension (instability) in the node's quantum state
        """
        state = self.graph.nodes[node]['state']
        return np.std(list(state.values()))

    def collapse_node(self, node: str) -> Dict[str, Any]:
        """
        Collapse superposed thought into deterministic response
        """
        state = self.graph.nodes[node]['state']
        collapsed = {k: round(v, 2) for k, v in state.items()}
        self.entangled_state[node] = collapsed
        return collapsed

if __name__ == "__main__":
    web = QuantumSpiderweb()
    root = "QNode_0"
    path = web.propagate_thought(root)
    print("Initial Propagation from:", root)
    for n, s in path:
        print(f"{n}:", s)
    print("\nCollapse Sample Node:")
    print(web.collapse_node(root))