File size: 8,995 Bytes
19a14ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import aiohttp
import json
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Dict, Any

from components.adaptive_learning import AdaptiveLearningEnvironment
from components.ai_driven_creativity import AIDrivenCreativity
from components.collaborative_ai import CollaborativeAI
from components.cultural_sensitivity import CulturalSensitivityEngine
from components.data_processing import AdvancedDataProcessor
from components.dynamic_learning import DynamicLearner
from components.ethical_governance import EthicalAIGovernance
from components.explainable_ai import ExplainableAI
from components.feedback_manager import ImprovedFeedbackManager
from components.multimodal_analyzer import MultimodalAnalyzer
from components.neuro_symbolic import NeuroSymbolicEngine
from components.quantum_optimizer import QuantumInspiredOptimizer
from components.real_time_data import RealTimeDataIntegrator
from components.sentiment_analysis import EnhancedSentimentAnalyzer
from components.self_improving_ai import SelfImprovingAI
from components.user_personalization import UserPersonalizer
from models.cognitive_engine import BroaderPerspectiveEngine
from models.elements import Element
from models.healing_system import SelfHealingSystem
from models.safety_system import SafetySystem
from models.user_profiles import UserProfile
from utils.database import Database
from utils.logger import logger

class AICore:
    """Improved core system with cutting-edge capabilities"""
    def __init__(self, config_path: str = "config.json"):
        self.config = self._load_config(config_path)
        self.models = self._initialize_models()
        self.cognition = BroaderPerspectiveEngine()
        self.self_healing = SelfHealingSystem(self.config)
        self.safety_system = SafetySystem()
        self.emotional_analyzer = EnhancedSentimentAnalyzer()
        self.elements = self._initialize_elements()
        self.security_level = 0
        self.http_session = aiohttp.ClientSession()
        self.database = Database()  # Initialize database
        self.user_profiles = UserProfile(self.database)  # Initialize user profiles
        self.feedback_manager = ImprovedFeedbackManager(self.database)  # Initialize feedback manager
        self.context_manager = AdaptiveLearningEnvironment()  # Initialize adaptive learning environment
        self.data_fetcher = RealTimeDataIntegrator()  # Initialize real-time data fetcher
        self.sentiment_analyzer = EnhancedSentimentAnalyzer()  # Initialize sentiment analyzer
        self.data_processor = AdvancedDataProcessor()  # Initialize advanced data processor
        self.dynamic_learner = DynamicLearner()  # Initialize dynamic learner
        self.multimodal_analyzer = MultimodalAnalyzer()  # Initialize multimodal analyzer
        self.ethical_decision_maker = EthicalAIGovernance()  # Initialize ethical decision maker
        self.user_personalizer = UserPersonalizer(self.database)  # Initialize user personalizer
        self.ai_integrator = CollaborativeAI()  # Initialize AI integrator
        self.neuro_symbolic_engine = NeuroSymbolicEngine()  # Initialize neuro-symbolic engine
        self.explainable_ai = ExplainableAI()  # Initialize explainable AI
        self.quantum_inspired_optimizer = QuantumInspiredOptimizer()  # Initialize quantum-inspired optimizer
        self.cultural_sensitivity_engine = CulturalSensitivityEngine()  # Initialize cultural sensitivity engine
        self.self_improving_ai = SelfImprovingAI()  # Initialize self-improving AI
        self.ai_driven_creativity = AIDrivenCreativity()  # Initialize AI-driven creativity
        self._validate_perspectives()

    def _load_config(self, config_path: str) -> dict:
        """Load configuration from a file"""
        with open(config_path, 'r') as file:
            return json.load(file)

    def _initialize_models(self):
        """Initialize models required by the AICore class"""
        models = {
            "mistralai": AutoModelForCausalLM.from_pretrained(self.config["model_name"]),
            "tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"])
        }
        return models

    def _initialize_elements(self):
        """Initialize elements with their defense abilities"""
        elements = {
            "hydrogen": Element("Hydrogen", "H", "Python", ["Lightweight", "Reactive"], ["Combustion"], "evasion"),
            "carbon": Element("Carbon", "C", "Java", ["Versatile", "Strong"], ["Bonding"], "adaptability"),
            "iron": Element("Iron", "Fe", "C++", ["Durable", "Magnetic"], ["Rusting"], "fortification"),
            "silicon": Element("Silicon", "Si", "JavaScript", ["Semiconductor", "Abundant"], ["Doping"], "barrier"),
            "oxygen": Element("Oxygen", "O", "Rust", ["Oxidizing", "Life-supporting"], ["Combustion"], "regeneration")
        }
        return elements

    def _validate_perspectives(self):
        """Ensure configured perspectives are valid"""
        valid = self.cognition.available_perspectives
        invalid = [p for p in self.config["perspectives"] if p not in valid]
        if invalid:
            logger.warning(f"Removing invalid perspectives: {invalid}")
            self.config["perspectives"] = [p for p in self.config["perspectives"] if p in valid]

    async def _process_perspectives(self, query: str) -> List[str]:
        """Safely process perspectives using validated methods"""
        perspectives = []
        for p in self.config["perspectives"]:
            try:
                method = self.cognition.get_perspective_method(p)
                perspectives.append(method(query))
            except Exception as e:
                logger.error(f"Perspective processing failed: {e}")
        return perspectives

    async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
        """Generate response with advanced capabilities"""
        try:
            # Initialize temporary modifiers/filters for this query
            response_modifiers = []
            response_filters = []

            # Execute element defenses
            for element in self.elements.values():
                element.execute_defense_function(self, response_modifiers, response_filters)

            # Process perspectives and generate response
            perspectives = await self._process_perspectives(query)
            model_response = await self._generate_local_model_response(query)

            # Apply sentiment analysis
            sentiment = self.sentiment_analyzer.detailed_analysis(query)

            # Apply modifiers and filters
            final_response = model_response
            for modifier in response_modifiers:
                final_response = modifier(final_response)
            for filter_func in response_filters:
                final_response = filter_func(final_response)

            # Adjust response based on feedback
            feedback = self.database.get_latest_feedback(user_id)
            if feedback:
                final_response = self.feedback_manager.adjust_response_based_on_feedback(final_response, feedback)

            # Log user interaction for analytics
            self.database.log_interaction(user_id, query, final_response)

            # Update context
            self.context_manager.update_environment(user_id, {"query": query, "response": final_response})

            # Personalize response
            final_response = self.user_personalizer.personalize_response(final_response, user_id)

            # Apply ethical decision-making framework
            final_response = self.ethical_decision_maker.enforce_policies(final_response)

            # Explain the decision
            explanation = self.explainable_ai.explain_decision(final_response, query)

            return {
                "insights": perspectives,
                "response": final_response,
                "sentiment": sentiment,
                "security_level": self.security_level,
                "health_status": await self.self_healing.check_health(),
                "explanation": explanation
            }
        except Exception as e:
            logger.error(f"Response generation failed: {e}")
            return {"error": "Processing failed - safety protocols engaged"}

    async def _generate_local_model_response(self, query: str) -> str:
        """Generate a response from the local model"""
        inputs = self.models['tokenizer'](query, return_tensors="pt")
        outputs = self.models['mistralai'].generate(**inputs)
        return self.models['tokenizer'].decode(outputs[0], skip_special_tokens=True)

    async def shutdown(self):
        """Proper async resource cleanup"""
        await self.http_session.close()
        await self.database.close()  # Close the database connection