File size: 2,625 Bytes
8d74ac0 e1d648f 8d74ac0 e1d648f 8d74ac0 e1d648f 8d74ac0 e1d648f 8d74ac0 e1d648f 8d74ac0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import os
import json
from typing import Optional
from components.ethics import EthicalAIGovernance
from sentiment_analysis import EnhancedSentimentAnalyzer
from elements import Element # You may have multiple Element types
from self_improving_ai import SelfImprovingAI
from ai_driven_creativity import AIDrivenCreativity
from data_processing import AdvancedDataProcessor
from dynamic_learning import DynamicLearner
from multimodal_analyzer import MultimodalAnalyzer
from neuro_symbolic import NeuroSymbolicEngine
from cocoonanalyzer import CognitionCocooner
from optimize import QuantumInspiredOptimizer
from quantum_spiderweb import QuantumSpiderweb
class AICore:
def __init__(self, config_path: str = "Codetteconfig.json"):
self.config = self.load_config(config_path)
self.memory = CognitionCocooner()
self.ethics = EthicalAIGovernance()
self.sentiment = EnhancedSentimentAnalyzer()
self.creativity = AIDrivenCreativity()
self.data_processor = AdvancedDataProcessor()
self.dynamic_learner = DynamicLearner()
self.multimodal = MultimodalAnalyzer()
self.neuro_symbolic = NeuroSymbolicEngine()
self.optimizer = self._init_optimizer()
self.spiderweb = QuantumSpiderweb()
self.self_improving = SelfImprovingAI()
self.elements = [] # To be filled with Element() instances
def load_config(self, path: str) -> dict:
if os.path.exists(path):
with open(path, 'r') as f:
return json.load(f)
return {}
def optimizer(self):
# Placeholder example objective function
def objective_fn(vec):
return sum(x**2 for x in vec)
return QuantumInspiredOptimizer(objective_fn, dimension=5)
def register_element(self, element: Element):
self.elements.append(element)
def process_input(self, user_input: str) -> str:
sentiment_info = self.sentiment.detailed_analysis(user_input)
ethical_overlay = self.ethics.enforce_policies(user_input)
symbol_output = self.neuro_symbolic.reason(user_input)
memory_id = self.memory.wrap({"input": user_input, "analysis": symbol_output})
result = f"Sentiment: {sentiment_info['sentiment']}\n"
result += f"Ethical Overlay:\n{ethical_overlay}\n"
result += f"Symbolic Reasoning:\n{symbol_output}\n"
result += f"Memory Cocoon ID: {memory_id}"
return result
if __name__ == "__main__":
codette = AI_Core()
sample = "What does it mean to be sentient?"
response = codette.process_input(sample)
print(response)
|