File size: 8,367 Bytes
31e9505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import json
import numpy as np
import random
import math
import matplotlib.pyplot as plt
import time
from typing import Callable, List, Tuple, Dict, Any

class QuantumInspiredMultiObjectiveOptimizer:
    def __init__(self, objective_fns: List[Callable[[List[float]], float]],
                 dimension: int,
                 population_size: int = 100,
                 iterations: int = 200,
                 tunneling_prob: float = 0.2,
                 entanglement_factor: float = 0.5):

        self.objective_fns = objective_fns
        self.dimension = dimension
        self.population_size = population_size
        self.iterations = iterations
        self.tunneling_prob = tunneling_prob
        self.entanglement_factor = entanglement_factor

        self.population = [self._random_solution() for _ in range(population_size)]
        self.pareto_front = []

    def _random_solution(self) -> List[float]:
        return [random.uniform(-10, 10) for _ in range(self.dimension)]

    def _tunnel(self, solution: List[float]) -> List[float]:
        return [x + np.random.normal(0, 1) * random.choice([-1, 1])
                if random.random() < self.tunneling_prob else x
                for x in solution]

    def _entangle(self, solution1: List[float], solution2: List[float]) -> List[float]:
        return [(1 - self.entanglement_factor) * x + self.entanglement_factor * y
                for x, y in zip(solution1, solution2)]

    def _evaluate(self, solution: List[float]) -> List[float]:
        return [fn(solution) for fn in self.objective_fns]

    def _dominates(self, obj1: List[float], obj2: List[float]) -> bool:
        return all(o1 <= o2 for o1, o2 in zip(obj1, obj2)) and any(o1 < o2 for o1, o2 in zip(obj1, obj2))

    def _pareto_selection(self, scored_population: List[Tuple[List[float], List[float]]]) -> List[Tuple[List[float], List[float]]]:
        pareto = []
        for candidate in scored_population:
            if not any(self._dominates(other[1], candidate[1]) for other in scored_population if other != candidate):
                pareto.append(candidate)
        unique_pareto = []
        seen = set()
        for sol, obj in pareto:
            key = tuple(round(x, 6) for x in sol)
            if key not in seen:
                unique_pareto.append((sol, obj))
                seen.add(key)
        return unique_pareto

    def optimize(self) -> Tuple[List[Tuple[List[float], List[float]]], float]:
        start_time = time.time()
        for _ in range(self.iterations):
            scored_population = [(sol, self._evaluate(sol)) for sol in self.population]
            pareto = self._pareto_selection(scored_population)
            self.pareto_front = pareto

            new_population = [p[0] for p in pareto]
            while len(new_population) < self.population_size:
                parent1 = random.choice(pareto)[0]
                parent2 = random.choice(pareto)[0]
                if parent1 == parent2:
                    parent2 = self._tunnel(parent2)
                child = self._entangle(parent1, parent2)
                child = self._tunnel(child)
                new_population.append(child)

            self.population = new_population

        duration = time.time() - start_time
        return self.pareto_front, duration

def simple_neural_activator(quantum_vec, chaos_vec):
    q_sum = sum(quantum_vec)
    c_var = np.var(chaos_vec)
    activated = 1 if q_sum + c_var > 1 else 0
    return activated

def codette_dream_agent(quantum_vec, chaos_vec):
    dream_q = [np.sin(q * np.pi) for q in quantum_vec]
    dream_c = [np.cos(c * np.pi) for c in chaos_vec]
    return dream_q, dream_c

def philosophical_perspective(qv, cv):
    m = np.max(qv) + np.max(cv)
    if m > 1.3:
        return "Philosophical Note: This universe is likely awake."
    else:
        return "Philosophical Note: Echoes in the void."

class EthicalMutationFilter:
    def __init__(self, policies: Dict[str, Any]):
        self.policies = policies
        self.violations = []

    def evaluate(self, quantum_vec: List[float], chaos_vec: List[float]) -> bool:
        entropy = np.var(chaos_vec)
        symmetry = 1.0 - abs(sum(quantum_vec)) / (len(quantum_vec) * 1.0)

        if entropy > self.policies.get("max_entropy", float('inf')):
            self.annotate_violation(f"Entropy {entropy:.2f} exceeds limit.")
            return False

        if symmetry < self.policies.get("min_symmetry", 0.0):
            self.annotate_violation(f"Symmetry {symmetry:.2f} too low.")
            return False

        return True

    def annotate_violation(self, reason: str):
        print(f"\u26d4 Ethical Filter Violation: {reason}")
        self.violations.append(reason)

if __name__ == '__main__':
    ethical_policies = {
        "max_entropy": 4.5,
        "min_symmetry": 0.1,
        "ban_negative_bias": True
    }
    ethical_filter = EthicalMutationFilter(ethical_policies)

    def sphere(x: List[float]) -> float:
        return sum(xi ** 2 for xi in x)

    def rastrigin(x: List[float]) -> float:
        return 10 * len(x) + sum(xi**2 - 10 * math.cos(2 * math.pi * xi) for xi in x)

    optimizer = QuantumInspiredMultiObjectiveOptimizer(
        objective_fns=[sphere, rastrigin],
        dimension=20,
        population_size=100,
        iterations=200
    )

    pareto_front, duration = optimizer.optimize()
    print(f"Quantum Optimizer completed in {duration:.2f} seconds")
    print(f"Pareto front size: {len(pareto_front)}")

    x_vals_q = [obj[0] for _, obj in pareto_front]
    y_vals_q = [obj[1] for _, obj in pareto_front]

    plt.scatter(x_vals_q, y_vals_q, c='blue', label='Quantum Optimizer')
    plt.xlabel('Objective 1')
    plt.ylabel('Objective 2')
    plt.title('Pareto Front Visualization')
    plt.legend()
    plt.grid(True)
    plt.show()

    folder = '.'
    quantum_states=[]
    chaos_states=[]
    proc_ids=[]
    labels=[]
    all_perspectives=[]
    meta_mutations=[]

    print("\nMeta Reflection Table:\n")
    header = "Cocoon File | Quantum State | Chaos State | Neural | Dream Q/C | Philosophy"
    print(header)
    print('-'*len(header))

    for fname in os.listdir(folder):
        if fname.endswith('.cocoon'):
            with open(os.path.join(folder, fname), 'r') as f:
                try:
                    dct = json.load(f)['data']
                    q = dct.get('quantum_state', [0, 0])
                    c = dct.get('chaos_state', [0, 0, 0])

                    if not ethical_filter.evaluate(q, c):
                        continue

                    neural = simple_neural_activator(q, c)
                    dreamq, dreamc = codette_dream_agent(q, c)
                    phil = philosophical_perspective(q, c)

                    quantum_states.append(q)
                    chaos_states.append(c)
                    proc_ids.append(dct.get('run_by_proc', -1))
                    labels.append(fname)
                    all_perspectives.append(dct.get('perspectives', []))
                    meta_mutations.append({'file': fname, 'quantum': q, 'chaos': c, 'dreamQ': dreamq, 'dreamC': dreamc, 'neural': neural, 'philosophy': phil})
                    print(f"{fname} | {q} | {c} | {neural} | {dreamq}/{dreamc} | {phil}")
                except Exception as e:
                    print(f"Warning: {fname} failed ({e})")

    if meta_mutations:
        dq0=[m['dreamQ'][0] for m in meta_mutations]
        dc0=[m['dreamC'][0] for m in meta_mutations]
        ncls=[m['neural'] for m in meta_mutations]

        plt.figure(figsize=(8,6))
        sc=plt.scatter(dq0, dc0, c=ncls, cmap='spring', s=100)
        plt.xlabel('Dream Quantum[0]')
        plt.ylabel('Dream Chaos[0]')
        plt.title('Meta-Dream Codette Universes')
        plt.colorbar(sc, label="Neural Activation Class")
        plt.grid(True)
        plt.show()

        with open("codette_meta_summary.json", "w") as outfile:
            json.dump(meta_mutations, outfile, indent=2)
        print("\nExported meta-analysis to 'codette_meta_summary.json'")

    if ethical_filter.violations:
        with open("ethics_violation_log.json", "w") as vf:
            json.dump(ethical_filter.violations, vf, indent=2)
        print("\nExported ethics violations to 'ethics_violation_log.json'")
    else:
        print("\nNo ethical violations detected.")