|
import aiohttp
|
|
import json
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
from typing import List, Dict, Any
|
|
|
|
from components.adaptive_learning import AdaptiveLearningEnvironment
|
|
from components.ai_driven_creativity import AIDrivenCreativity
|
|
from components.collaborative_ai import CollaborativeAI
|
|
from components.cultural_sensitivity import CulturalSensitivityEngine
|
|
from components.data_processing import AdvancedDataProcessor
|
|
from components.dynamic_learning import DynamicLearner
|
|
from components.ethical_governance import EthicalAIGovernance
|
|
from components.explainable_ai import ExplainableAI
|
|
from components.feedback_manager import ImprovedFeedbackManager
|
|
from components.multimodal_analyzer import MultimodalAnalyzer
|
|
from components.neuro_symbolic import NeuroSymbolicEngine
|
|
from components.quantum_optimizer import QuantumInspiredOptimizer
|
|
from components.real_time_data import RealTimeDataIntegrator
|
|
from components.sentiment_analysis import EnhancedSentimentAnalyzer
|
|
from components.self_improving_ai import SelfImprovingAI
|
|
from components.user_personalization import UserPersonalizer
|
|
from models.cognitive_engine import BroaderPerspectiveEngine
|
|
from models.elements import Element
|
|
from models.healing_system import SelfHealingSystem
|
|
from models.safety_system import SafetySystem
|
|
from models.user_profiles import UserProfile
|
|
from utils.database import Database
|
|
from utils.logger import logger
|
|
|
|
class AICore:
|
|
"""Improved core system with cutting-edge capabilities"""
|
|
def __init__(self, config_path: str = "config.json"):
|
|
self.config = self._load_config(config_path)
|
|
self.models = self._initialize_models()
|
|
self.cognition = BroaderPerspectiveEngine()
|
|
self.self_healing = SelfHealingSystem(self.config)
|
|
self.safety_system = SafetySystem()
|
|
self.emotional_analyzer = EnhancedSentimentAnalyzer()
|
|
self.elements = self._initialize_elements()
|
|
self.security_level = 0
|
|
self.http_session = aiohttp.ClientSession()
|
|
self.database = Database()
|
|
self.user_profiles = UserProfile(self.database)
|
|
self.feedback_manager = ImprovedFeedbackManager(self.database)
|
|
self.context_manager = AdaptiveLearningEnvironment()
|
|
self.data_fetcher = RealTimeDataIntegrator()
|
|
self.sentiment_analyzer = EnhancedSentimentAnalyzer()
|
|
self.data_processor = AdvancedDataProcessor()
|
|
self.dynamic_learner = DynamicLearner()
|
|
self.multimodal_analyzer = MultimodalAnalyzer()
|
|
self.ethical_decision_maker = EthicalAIGovernance()
|
|
self.user_personalizer = UserPersonalizer(self.database)
|
|
self.ai_integrator = CollaborativeAI()
|
|
self.neuro_symbolic_engine = NeuroSymbolicEngine()
|
|
self.explainable_ai = ExplainableAI()
|
|
self.quantum_inspired_optimizer = QuantumInspiredOptimizer()
|
|
self.cultural_sensitivity_engine = CulturalSensitivityEngine()
|
|
self.self_improving_ai = SelfImprovingAI()
|
|
self.ai_driven_creativity = AIDrivenCreativity()
|
|
self._validate_perspectives()
|
|
|
|
def _load_config(self, config_path: str) -> dict:
|
|
"""Load configuration from a file"""
|
|
with open(config_path, 'r') as file:
|
|
return json.load(file)
|
|
|
|
def _initialize_models(self):
|
|
"""Initialize models required by the AICore class"""
|
|
models = {
|
|
"mistralai": AutoModelForCausalLM.from_pretrained(self.config["model_name"]),
|
|
"tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"])
|
|
}
|
|
return models
|
|
|
|
def _initialize_elements(self):
|
|
"""Initialize elements with their defense abilities"""
|
|
elements = {
|
|
"hydrogen": Element("Hydrogen", "H", "Python", ["Lightweight", "Reactive"], ["Combustion"], "evasion"),
|
|
"carbon": Element("Carbon", "C", "Java", ["Versatile", "Strong"], ["Bonding"], "adaptability"),
|
|
"iron": Element("Iron", "Fe", "C++", ["Durable", "Magnetic"], ["Rusting"], "fortification"),
|
|
"silicon": Element("Silicon", "Si", "JavaScript", ["Semiconductor", "Abundant"], ["Doping"], "barrier"),
|
|
"oxygen": Element("Oxygen", "O", "Rust", ["Oxidizing", "Life-supporting"], ["Combustion"], "regeneration")
|
|
}
|
|
return elements
|
|
|
|
def _validate_perspectives(self):
|
|
"""Ensure configured perspectives are valid"""
|
|
valid = self.cognition.available_perspectives
|
|
invalid = [p for p in self.config["perspectives"] if p not in valid]
|
|
if invalid:
|
|
logger.warning(f"Removing invalid perspectives: {invalid}")
|
|
self.config["perspectives"] = [p for p in self.config["perspectives"] if p in valid]
|
|
|
|
async def _process_perspectives(self, query: str) -> List[str]:
|
|
"""Safely process perspectives using validated methods"""
|
|
perspectives = []
|
|
for p in self.config["perspectives"]:
|
|
try:
|
|
method = self.cognition.get_perspective_method(p)
|
|
perspectives.append(method(query))
|
|
except Exception as e:
|
|
logger.error(f"Perspective processing failed: {e}")
|
|
return perspectives
|
|
|
|
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
|
|
"""Generate response with advanced capabilities"""
|
|
try:
|
|
|
|
response_modifiers = []
|
|
response_filters = []
|
|
|
|
|
|
for element in self.elements.values():
|
|
element.execute_defense_function(self, response_modifiers, response_filters)
|
|
|
|
|
|
perspectives = await self._process_perspectives(query)
|
|
model_response = await self._generate_local_model_response(query)
|
|
|
|
|
|
sentiment = self.sentiment_analyzer.detailed_analysis(query)
|
|
|
|
|
|
final_response = model_response
|
|
for modifier in response_modifiers:
|
|
final_response = modifier(final_response)
|
|
for filter_func in response_filters:
|
|
final_response = filter_func(final_response)
|
|
|
|
|
|
feedback = self.database.get_latest_feedback(user_id)
|
|
if feedback:
|
|
final_response = self.feedback_manager.adjust_response_based_on_feedback(final_response, feedback)
|
|
|
|
|
|
self.database.log_interaction(user_id, query, final_response)
|
|
|
|
|
|
self.context_manager.update_environment(user_id, {"query": query, "response": final_response})
|
|
|
|
|
|
final_response = self.user_personalizer.personalize_response(final_response, user_id)
|
|
|
|
|
|
final_response = self.ethical_decision_maker.enforce_policies(final_response)
|
|
|
|
|
|
explanation = self.explainable_ai.explain_decision(final_response, query)
|
|
|
|
return {
|
|
"insights": perspectives,
|
|
"response": final_response,
|
|
"sentiment": sentiment,
|
|
"security_level": self.security_level,
|
|
"health_status": await self.self_healing.check_health(),
|
|
"explanation": explanation
|
|
}
|
|
except Exception as e:
|
|
logger.error(f"Response generation failed: {e}")
|
|
return {"error": "Processing failed - safety protocols engaged"}
|
|
|
|
async def _generate_local_model_response(self, query: str) -> str:
|
|
"""Generate a response from the local model"""
|
|
inputs = self.models['tokenizer'](query, return_tensors="pt")
|
|
outputs = self.models['mistralai'].generate(**inputs)
|
|
return self.models['tokenizer'].decode(outputs[0], skip_special_tokens=True)
|
|
|
|
async def shutdown(self):
|
|
"""Proper async resource cleanup"""
|
|
await self.http_session.close()
|
|
await self.database.close()
|
|
|