|
|
|
import asyncio |
|
import json |
|
import os |
|
import logging |
|
from typing import List |
|
|
|
|
|
try: |
|
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer |
|
except ModuleNotFoundError: |
|
import subprocess |
|
import sys |
|
subprocess.check_call([sys.executable, "-m", "pip", "install", "vaderSentiment"]) |
|
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer |
|
|
|
|
|
try: |
|
import nltk |
|
from nltk.tokenize import word_tokenize |
|
nltk.download('punkt', quiet=True) |
|
except ImportError: |
|
import subprocess |
|
import sys |
|
subprocess.check_call([sys.executable, "-m", "pip", "install", "nltk"]) |
|
import nltk |
|
from nltk.tokenize import word_tokenize |
|
nltk.download('punkt', quiet=True) |
|
|
|
|
|
from perspectives import ( |
|
NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective, |
|
NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective, |
|
MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective, BiasMitigationPerspective |
|
) |
|
|
|
def setup_logging(config): |
|
if config.get('logging_enabled', True): |
|
log_level = config.get('log_level', 'DEBUG').upper() |
|
numeric_level = getattr(logging, log_level, logging.DEBUG) |
|
logging.basicConfig( |
|
filename='universal_reasoning.log', |
|
level=numeric_level, |
|
format='%(asctime)s - %(levelname)s - %(message)s' |
|
) |
|
else: |
|
logging.disable(logging.CRITICAL) |
|
|
|
def load_json_config(file_path): |
|
if not os.path.exists(file_path): |
|
logging.error(f"Configuration file '{file_path}' not found.") |
|
return {} |
|
try: |
|
with open(file_path, 'r') as file: |
|
config = json.load(file) |
|
logging.info(f"Configuration loaded from '{file_path}'.") |
|
config['allow_network_calls'] = False |
|
return config |
|
except json.JSONDecodeError as e: |
|
logging.error(f"Error decoding JSON from the configuration file '{file_path}': {e}") |
|
return {} |
|
|
|
def analyze_question(question): |
|
tokens = word_tokenize(question) |
|
logging.debug(f"Question tokens: {tokens}") |
|
return tokens |
|
|
|
class Element: |
|
def __init__(self, name, symbol, representation, properties, interactions, defense_ability): |
|
self.name = name |
|
self.symbol = symbol |
|
self.representation = representation |
|
self.properties = properties |
|
self.interactions = interactions |
|
self.defense_ability = defense_ability |
|
|
|
def execute_defense_function(self): |
|
message = f"{self.name} ({self.symbol}) executes its defense ability: {self.defense_ability}" |
|
logging.info(message) |
|
return message |
|
|
|
class CustomRecognizer: |
|
def recognize(self, question): |
|
if any(element_name.lower() in question.lower() for element_name in ["hydrogen", "diamond"]): |
|
return RecognizerResult(question) |
|
return RecognizerResult(None) |
|
|
|
def get_top_intent(self, recognizer_result): |
|
return "ElementDefense" if recognizer_result.text else "None" |
|
|
|
class RecognizerResult: |
|
def __init__(self, text): |
|
self.text = text |
|
|
|
class UniversalReasoning: |
|
def __init__(self, config): |
|
self.config = config |
|
self.perspectives = self.initialize_perspectives() |
|
self.elements = self.initialize_elements() |
|
self.recognizer = CustomRecognizer() |
|
self.sentiment_analyzer = SentimentIntensityAnalyzer() |
|
|
|
def initialize_perspectives(self): |
|
perspective_names = self.config.get('enabled_perspectives', [ |
|
"newton", "davinci", "human_intuition", "neural_network", "quantum_computing", |
|
"resilient_kindness", "mathematical", "philosophical", "copilot", "bias_mitigation" |
|
]) |
|
perspective_classes = { |
|
"newton": NewtonPerspective, |
|
"davinci": DaVinciPerspective, |
|
"human_intuition": HumanIntuitionPerspective, |
|
"neural_network": NeuralNetworkPerspective, |
|
"quantum_computing": QuantumComputingPerspective, |
|
"resilient_kindness": ResilientKindnessPerspective, |
|
"mathematical": MathematicalPerspective, |
|
"philosophical": PhilosophicalPerspective, |
|
"copilot": CopilotPerspective, |
|
"bias_mitigation": BiasMitigationPerspective |
|
} |
|
perspectives = [] |
|
for name in perspective_names: |
|
cls = perspective_classes.get(name.lower()) |
|
if cls: |
|
perspectives.append(cls(self.config)) |
|
logging.debug(f"Perspective '{name}' initialized.") |
|
return perspectives |
|
|
|
def initialize_elements(self): |
|
return [ |
|
Element("Hydrogen", "H", "Lua", ["Simple", "Lightweight", "Versatile"], |
|
["Integrates with other languages"], "Evasion"), |
|
Element("Diamond", "D", "Kotlin", ["Modern", "Concise", "Safe"], |
|
["Used for Android development"], "Adaptability") |
|
] |
|
|
|
async def generate_response(self, question): |
|
responses = [] |
|
tasks = [] |
|
|
|
for perspective in self.perspectives: |
|
if asyncio.iscoroutinefunction(perspective.generate_response): |
|
tasks.append(perspective.generate_response(question)) |
|
else: |
|
async def sync_wrapper(perspective, question): |
|
return perspective.generate_response(question) |
|
tasks.append(sync_wrapper(perspective, question)) |
|
|
|
perspective_results = await asyncio.gather(*tasks, return_exceptions=True) |
|
|
|
for perspective, result in zip(self.perspectives, perspective_results): |
|
if isinstance(result, Exception): |
|
logging.error(f"Error from {perspective.__class__.__name__}: {result}") |
|
else: |
|
responses.append(result) |
|
|
|
recognizer_result = self.recognizer.recognize(question) |
|
top_intent = self.recognizer.get_top_intent(recognizer_result) |
|
if top_intent == "ElementDefense": |
|
element_name = recognizer_result.text.strip() |
|
element = next((el for el in self.elements if el.name.lower() in element_name.lower()), None) |
|
if element: |
|
responses.append(element.execute_defense_function()) |
|
|
|
ethical = self.config.get("ethical_considerations", "Act transparently and respectfully.") |
|
responses.append(f"**Ethical Considerations:**\n{ethical}") |
|
|
|
return "\n\n".join(responses) |
|
|
|
def save_response(self, response): |
|
if self.config.get('enable_response_saving', False): |
|
path = self.config.get('response_save_path', 'responses.txt') |
|
with open(path, 'a', encoding='utf-8') as file: |
|
file.write(response + '\n') |
|
|
|
def backup_response(self, response): |
|
if self.config.get('backup_responses', {}).get('enabled', False): |
|
backup_path = self.config['backup_responses'].get('backup_path', 'backup_responses.txt') |
|
with open(backup_path, 'a', encoding='utf-8') as file: |
|
file.write(response + '\n') |
|
|