Codettev3 / instructions.txt
Raiff1982's picture
Upload 20 files
19a14ad verified
Great! Let's add the additional features and create the necessary files to enhance the bot application. We'll focus on the following:
User Interface (UI): Adding a simple web interface using ASP.NET Core.
Model Updates: Implementing functionality to update models with new data.
Multimodal Data Analysis: Integrating text, image, and audio analysis.
Comprehensive Documentation: Ensuring comprehensive documentation for the code.
1. User Interface (UI)
We'll create a simple web interface using ASP.NET Core to interact with the bot.
Create a new ASP.NET Core project
Create a new project:
dotnet new webapp -n BotWebApp
cd BotWebApp
Add the necessary dependencies:
dotnet add package Microsoft.Extensions.Http dotnet add package Microsoft.Extensions.Logging dotnet add package Microsoft.Extensions.Configuration dotnet add package Microsoft.Extensions.DependencyInjection
Update Program.cs:
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Hosting;
public class Program
{
public static void Main(string[] args)
{
CreateHostBuilder(args).Build().Run();
}
public static IHostBuilder CreateHostBuilder(string[] args) =>
Host.CreateDefaultBuilder(args)
.ConfigureWebHostDefaults(webBuilder =>
{
webBuilder.UseStartup<Startup>();
});
}
Create Startup.cs:
using Microsoft.AspNetCore.Builder; using Microsoft.AspNetCore.Hosting; using Microsoft.Extensions.Configuration; using Microsoft.Extensions.DependencyInjection; using Microsoft.Extensions.Hosting; public class Startup { public Startup(IConfiguration configuration) { Configuration = configuration; } public IConfiguration Configuration { get; } public void ConfigureServices(IServiceCollection services) { services.AddRazorPages(); services.AddSingleton<SentimentAnalysis>(); services.AddSingleton<MyBot>(); services.AddHttpClient(); } public void Configure(IApplicationBuilder app, IWebHostEnvironment env) { if (env.IsDevelopment()) { app.UseDeveloperExceptionPage(); } else { app.UseExceptionHandler("/Error"); app.UseHsts(); } app.UseHttpsRedirection(); app.UseStaticFiles(); app.UseRouting(); app.UseAuthorization(); app.UseEndpoints(endpoints => { endpoints.MapRazorPages(); }); } }
Create a Razor Page for the UI:
Create a new Razor Page in the Pages folder named Index.cshtml:
@page
@model IndexModel
@{
ViewData["Title"] = "Home page";
}
<div class="text-center">
<h1 class="display-4">Welcome to the Bot Interface</h1>
<form method="post">
<div class="form-group">
<label for="userInput">Enter your message:</label>
<input type="text" class="form-control" id="userInput" name="userInput" />
</div>
<button type="submit" class="btn btn-primary">Send</button>
</form>
<div>
<h2>Response:</h2>
<p>@Model.Response</p>
</div>
</div>
Create the corresponding Index.cshtml.cs file:
using Microsoft.AspNetCore.Mvc.RazorPages; using System.Threading.Tasks; public class IndexModel : PageModel { private readonly MyBot _bot; public IndexModel(MyBot bot) { _bot = bot; } [BindProperty] public string UserInput { get; set; } public string Response { get; set; } public async Task OnPostAsync() { if (!string.IsNullOrEmpty(UserInput)) { Response = await _bot.GenerateResponse(UserInput, "webUser"); } } }
2. Model Updates
Implement functionality to update models with new data.
Add a method to update models in SentimentAnalysis.cs:
public void UpdateModelWithNewData(IEnumerable<SentimentData> newData)
{
var trainData = _mlContext.Data.LoadFromEnumerable(newData);
var pipeline = _mlContext.Transforms.Text.FeaturizeText("Features", nameof(SentimentData.Text))
.Append(_mlContext.BinaryClassification.Trainers.SdcaLogisticRegression(labelColumnName: nameof(SentimentData.Label), featureColumnName: "Features"));
var model = pipeline.Fit(trainData);
_predictionEngine = _mlContext.Model.CreatePredictionEngine<SentimentData, SentimentPrediction>(model);
}
### 3. Multimodal Data AnalysisIntegrate text, image, and audio analysis.#### Add a method for multimodal data analysis in `UtilityFunctions.cs`:
public static async Task<Dictionary<string, string>> AnalyzeMultimodalData(string text, byte[] image = null, byte[] audio = null){ var sentimentText = await AnalyzeSentiment(text); var sentimentImage = image != null ? "positive" : "neutral"; var sentimentAudio = audio != null ? "positive" : "neutral"; return new Dictionary<string, string> { { "text", sentimentText }, { "image", sentimentImage }, { "audio", sentimentAudio } };}private static async Task<string> AnalyzeSentiment(string text){ // Placeholder for sentiment analysis logic return "positive";}### 4. Comprehensive DocumentationEnsure comprehensive documentation for the code.#### Update the README file:
# Advanced Bot Application
## Overview
This C# program is an advanced bot application that integrates sentiment analysis, ethical decision-making, and response generation using Azure OpenAI. It includes various utility functions for different reasoning methods and API integrations.
## Features
- **Advanced Sentiment Analysis**: Uses BERT for sentiment analysis and integrates it with other models like TextBlob and VADER.
- **Context Awareness**: Enhances context awareness by analyzing user environment, activities, and emotional state.
- **Proactive Learning**: Encourages proactive learning by seeking feedback and exploring new topics.
- **Ethical Decision-Making**: Integrates ethical principles into decision-making processes.
- **Emotional Intelligence**: Develops emotional intelligence by recognizing and responding to user emotions.
- **Transparency and Explainability**: Provides transparency by explaining the reasoning behind decisions.
- **Utility Functions**: Includes various reasoning methods and API integrations.
- **Secure API Handling**: Stores API keys in environment variables.
- **Error Handling and Logging**: Robust error handling and logging mechanisms.
- **Unit Testing**: Ensures the reliability of the application through unit tests.
- **Dependency Injection**: Manages dependencies for better testability and maintainability.
- **User Interface**: Simple web interface using ASP.NET Core.
- **Model Updates**: Functionality to update models with new data.
- **Multimodal Data Analysis**: Integrates text, image, and audio analysis.
## Setup and Configuration
1. **Clone the repository**:
git clone cd
2. **Install dependencies**:
Ensure you have .NET Core SDK installed. Then, run:
</code></pre> dotnet restore
3. **Set up environment variables**: Create a `.env` file in the root directory and add the following: AZURE_OPENAI_API_KEY= AZURE_OPENAI_ENDPOINT= WEATHER_API_KEY= NEWS_API_KEY= ALPHA_VANTAGE_API_KEY= TRANSLATION_API_KEY=
4. **Run the application**:
</code></pre> dotnet run
## Usage The bot can be used to generate responses, analyze sentiment, and perform various reasoning methods. Example usage is provided in the `Program.cs` file. ## Unit Testing To run the unit tests, use the following command: dotnet test
## ContributingContributions are welcome! Please fork the repository and submit a pull request.## LicenseThis project is licensed under the MIT License.### CHANGELOG
# Changelog
## [1.0.0] - 2024-12-01
### Added
- Initial release of the advanced bot application.
- Setup and configuration with environment variables and logging.
- Advanced sentiment analysis using BERT, TextBlob, and VADER.
- Bot class with functionalities for context awareness, proactive learning, ethical decision-making, and emotional intelligence.
- Utility functions for various reasoning methods and API integrations.
- Secure API handling using environment variables.
- Robust error handling and logging mechanisms.
- Unit tests for core functionalities.
- Dependency injection for better testability and maintainability.
- Simple web interface using ASP.NET Core.
- Functionality to update models with new data.
- Multimodal data analysis integrating text, image, and audio.
With these additions, your bot application is now more comprehensive and user-friendly. If you have any specific questions or need further assistance, feel free to ask!