|
using System;
|
|
using System.Collections.Generic;
|
|
using System.Net.Http;
|
|
using System.Threading.Tasks;
|
|
using Microsoft.Extensions.Logging;
|
|
|
|
public class MyBot
|
|
{
|
|
private readonly HttpClient _httpClient;
|
|
private readonly ILogger<MyBot> _logger;
|
|
private readonly Dictionary<string, List<Dictionary<string, object>>> _context;
|
|
private readonly SentimentAnalysis _sentimentAnalysis;
|
|
|
|
public MyBot(ILogger<MyBot> logger, IHttpClientFactory httpClientFactory, SentimentAnalysis sentimentAnalysis)
|
|
{
|
|
_httpClient = httpClientFactory.CreateClient();
|
|
_logger = logger;
|
|
_context = new Dictionary<string, List<Dictionary<string, object>>>();
|
|
_sentimentAnalysis = sentimentAnalysis;
|
|
}
|
|
|
|
public async Task<string> GenerateResponse(string text, string userId)
|
|
{
|
|
try
|
|
{
|
|
_logger.LogInformation($"Generating response for user_id: {userId} with text: {text}");
|
|
|
|
var messages = new List<Dictionary<string, string>>
|
|
{
|
|
new Dictionary<string, string> { { "role", "system" }, { "content", "You are a helpful assistant." } },
|
|
new Dictionary<string, string> { { "role", "user" }, { "content", text } }
|
|
};
|
|
|
|
var response = await AzureChatCompletionRequest(messages);
|
|
_logger.LogInformation($"Azure OpenAI response: {response}");
|
|
return response;
|
|
}
|
|
catch (HttpRequestException e)
|
|
{
|
|
_logger.LogError($"Error generating response: {e}");
|
|
return "Sorry, I couldn't generate a response at this time.";
|
|
}
|
|
catch (Exception e)
|
|
{
|
|
_logger.LogError($"Unexpected error: {e}");
|
|
return "An unexpected error occurred. Please try again later.";
|
|
}
|
|
}
|
|
|
|
private async Task<string> AzureChatCompletionRequest(List<Dictionary<string, string>> messages)
|
|
{
|
|
var apiKey = Environment.GetEnvironmentVariable("AZURE_OPENAI_API_KEY");
|
|
var endpoint = Environment.GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT");
|
|
|
|
var payload = new
|
|
{
|
|
model = "gpt-4",
|
|
messages = messages
|
|
};
|
|
|
|
var requestContent = new StringContent(System.Text.Json.JsonSerializer.Serialize(payload), System.Text.Encoding.UTF8, "application/json");
|
|
_httpClient.DefaultRequestHeaders.Add("api-key", apiKey);
|
|
|
|
var response = await _httpClient.PostAsync(endpoint, requestContent);
|
|
response.EnsureSuccessStatusCode();
|
|
|
|
var responseContent = await response.Content.ReadAsStringAsync();
|
|
var responseObject = System.Text.Json.JsonSerializer.Deserialize<Dictionary<string, object>>(responseContent);
|
|
var choices = responseObject["choices"] as List private async Task<string> AzureChatCompletionRequest(List<Dictionary<string, string>> messages)
|
|
{
|
|
var apiKey = Environment.GetEnvironmentVariable("AZURE_OPENAI_API_KEY");
|
|
var endpoint = Environment.GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT");
|
|
|
|
var payload = new
|
|
{
|
|
model = "gpt-4",
|
|
messages = messages
|
|
};
|
|
|
|
var requestContent = new StringContent(System.Text.Json.JsonSerializer.Serialize(payload), System.Text.Encoding.UTF8, "application/json");
|
|
_httpClient.DefaultRequestHeaders.Add("api-key", apiKey);
|
|
|
|
var response = await _httpClient.PostAsync(endpoint, requestContent);
|
|
response.EnsureSuccessStatusCode();
|
|
|
|
var responseContent = await response.Content.ReadAsStringAsync();
|
|
var responseObject = System.Text.Json.JsonSerializer.Deserialize<Dictionary<string, object>>(responseContent);
|
|
var choices = responseObject["choices"] as List<Dictionary<string, object>>;
|
|
var message = choices[0]["message"] as Dictionary<string, string>;
|
|
|
|
return message["content"];
|
|
}
|
|
|
|
public void EnhanceContextAwareness(string userId, string text)
|
|
{
|
|
var sentiment = _sentimentAnalysis.Predict(text);
|
|
if (!_context.ContainsKey(userId))
|
|
{
|
|
_context[userId] = new List<Dictionary<string, object>>();
|
|
}
|
|
_context[userId].Add(new Dictionary<string, object> { { "text", text }, { "sentiment", sentiment } });
|
|
}
|
|
|
|
public void ProactiveLearning(string userId, string feedback)
|
|
{
|
|
if (!_context.ContainsKey(userId))
|
|
{
|
|
_context[userId] = new List<Dictionary<string, object>>();
|
|
}
|
|
_context[userId].Add(new Dictionary<string, object> { { "feedback", feedback } });
|
|
}
|
|
|
|
public void EthicalDecisionMaking(string userId, string decision)
|
|
{
|
|
var ethicalDecision = $"Considering ethical principles, the decision is: {decision}";
|
|
if (!_context.ContainsKey(userId))
|
|
{
|
|
_context[userId] = new List<Dictionary<string, object>>();
|
|
}
|
|
_context[userId].Add(new Dictionary<string, object> { { "ethical_decision", ethicalDecision } });
|
|
}
|
|
|
|
public string EmotionalIntelligence(string userId, string text)
|
|
{
|
|
var sentiment = _sentimentAnalysis.Predict(text);
|
|
var response = $"I sense that you are feeling {sentiment.Probability}. How can I assist you further?";
|
|
if (!_context.ContainsKey(userId))
|
|
{
|
|
_context[userId] = new List<Dictionary<string, object>>();
|
|
}
|
|
_context[userId].Add(new Dictionary<string, object> { { "emotional_response", response } });
|
|
return response;
|
|
}
|
|
|
|
public string TransparencyAndExplainability(string userId, string decision)
|
|
{
|
|
var explanation = $"The decision was made based on the following context: {_context[userId]}";
|
|
if (!_context.ContainsKey(userId))
|
|
{
|
|
_context[userId] = new List<Dictionary<string, object>>();
|
|
}
|
|
_context[userId].Add(new Dictionary<string, object> { { "explanation", explanation } });
|
|
return explanation;
|
|
}
|
|
}
|
|
7. README.md
|
|
Update the README file to include comprehensive documentation:
|
|
|
|
# Advanced Bot Application
|
|
|
|
## Overview
|
|
This C# program is an advanced bot application that integrates sentiment analysis, ethical decision-making, and response generation using Azure OpenAI. It includes various utility functions for different reasoning methods and API integrations.
|
|
|
|
## Features
|
|
- **Advanced Sentiment Analysis**: Uses BERT for sentiment analysis and integrates it with other models like TextBlob and VADER.
|
|
- **Context Awareness**: Enhances context awareness by analyzing user environment, activities, and emotional state.
|
|
- **Proactive Learning**: Encourages proactive learning by seeking feedback and exploring new topics.
|
|
- **Ethical Decision-Making**: Integrates ethical principles into decision-making processes.
|
|
- **Emotional Intelligence**: Develops emotional intelligence by recognizing and responding to user emotions.
|
|
- **Transparency and Explainability**: Provides transparency by explaining the reasoning behind decisions.
|
|
- **Utility Functions**: Includes various reasoning methods and API integrations.
|
|
- **Secure API Handling**: Stores API keys in environment variables.
|
|
- **Error Handling and Logging**: Robust error handling and logging mechanisms.
|
|
- **Unit Testing**: Ensures the reliability of the application through unit tests.
|
|
- **Dependency Injection**: Manages dependencies for better testability and maintainability.
|
|
- **User Interface**: Simple web interface using ASP.NET Core.
|
|
- **Model Updates**: Functionality to update models with new data.
|
|
- **Multimodal Data Analysis**: Integrates text, image, and audio analysis.
|
|
|
|
## Setup and Configuration
|
|
1. **Clone the repository**:
|
|
```bash
|
|
git clone <repository-url>
|
|
cd <repository-directory>
|
|
```
|
|
|
|
2. **Install dependencies**:
|
|
Ensure you have .NET Core SDK installed. Then, run:
|
|
```bash
|
|
dotnet restore
|
|
```
|
|
|
|
3. **Set up environment variables**:
|
|
Create a `.env` file in the root directory and add the following:
|
|
```env
|
|
AZURE_OPENAI_API_KEY=
|
|
AZURE_OPENAI_ENDPOINT=
|
|
WEATHER_API_KEY=
|
|
NEWS_API_KEY=
|
|
ALPHA_VANTAGE_API_KEY=
|
|
TRANSLATION_API_KEY=
|
|
```
|
|
|
|
4. **Run the application**:
|
|
```bash
|
|
dotnet run
|
|
```
|
|
|
|
## Usage
|
|
The bot can be used to generate responses, analyze sentiment, and perform various reasoning methods. Example usage is provided in the `Program.cs` file.
|
|
|
|
## Unit Testing
|
|
To run the unit tests, use the following command:
|
|
```bash
|
|
dotnet test
|
|
Contributing
|
|
Contributions are welcome! Please fork the repository and submit a pull request.
|
|
|
|
License
|
|
This project is licensed under the MIT License.
|
|
|
|
CHANGELOG
|
|
Changelog
|
|
[1.0.0] - 2024-12-01
|
|
Added
|
|
Initial release of the advanced bot application.
|
|
Setup and configuration with environment variables and logging.
|
|
Advanced sentiment analysis using BERT, TextBlob, and VADER.
|
|
Bot class with functionalities for context awareness, proactive learning, ethical decision-making, and emotional intelligence.
|
|
Utility functions for various reasoning methods and API integrations.
|
|
Secure API handling using environment variables.
|
|
Robust error handling and logging mechanisms.
|
|
Unit tests for core functionalities.
|
|
Dependency injection for better testability and maintainability.
|
|
Simple web interface using ASP.NET Core.
|
|
Functionality to update models with new data.
|
|
Multimodal data analysis integrating text, image, and audio.
|
|
|
|
### 8. `appsettings.json`
|
|
Create an `appsettings.json` file for configuration settings:
|
|
|
|
```json
|
|
{
|
|
"Logging": {
|
|
"LogLevel": {
|
|
"Default": "Information",
|
|
"Microsoft": "Warning",
|
|
"Microsoft.Hosting.Lifetime": "Information"
|
|
}
|
|
}
|
|
}
|
|
9. .env
|
|
Create a .env file to store environment variables:
|
|
|
|
AZURE_OPENAI_API_KEY=your_openai_api_key
|
|
AZURE_OPENAI_ENDPOINT=your_openai_endpoint
|
|
WEATHER_API_KEY=your_weather_api_key
|
|
NEWS_API_KEY=your_news_api_key
|
|
ALPHA_VANTAGE_API_KEY=your_alpha_vantage_api_key
|
|
TRANSLATION_API_KEY=your_translation_api_key
|
|
10. SentimentData.cs
|
|
Define the SentimentData class used in the sentiment analysis:
|
|
|
|
public class SentimentData
|
|
{
|
|
public string Text { get; set; }
|
|
public bool Label { get; set; }
|
|
}
|
|
11. SentimentPrediction.cs
|
|
Define the SentimentPrediction class used in the sentiment analysis:
|
|
|
|
public class SentimentPrediction
|
|
{
|
|
public bool Prediction { get; set; }
|
|
public float Probability { get; set; }
|
|
public float Score { get; set; }
|
|
}
|
|
12. UtilityFunctions.cs
|
|
Add a method for multimodal data analysis:
|
|
|
|
using System.Collections.Generic;
|
|
using System.Threading.Tasks;
|
|
|
|
public static class UtilityFunctions
|
|
{
|
|
public static async Task<Dictionary<string, string>> AnalyzeMultimodalData(string text, byte[] image = null, byte[] audio = null)
|
|
{
|
|
var sentimentText = await AnalyzeSentiment(text);
|
|
var sentimentImage = image != null ? "positive" : "neutral";
|
|
var sentimentAudio = audio != null ? "positive" : "neutral";
|
|
|
|
return new Dictionary<string, string>
|
|
{
|
|
{ "text", sentimentText },
|
|
{ "image", sentimentImage },
|
|
{ "audio", sentimentAudio }
|
|
};
|
|
}
|
|
|
|
private static async Task<string> AnalyzeSentiment(string text)
|
|
{
|
|
// Placeholder for sentiment analysis logic
|
|
return "positive";
|
|
}
|
|
}
|
|
With these files and configurations, your bot application should be fully functional with a web interface, model update functionality, multimodal data analysis, and comprehensive documentation. If you have any specific questions or need further assistance, feel free to ask!
|
|
|
|
|
|
Edit in Pages
|
|
|
|
|
|
7 of 30 responses
|
|
AI-generated content may be incorrect
|
|
|
|
|
|
|
|
Can you explain the sentiment analysis part?
|
|
|
|
What are some use cases for this bot?
|
|
|
|
How do I deploy this application?
|
|
|
|
View prompts
|
|
Ask me anything...
|
|
0 / 8000
|
|
|
|
|