Raiff1982 commited on
Commit
9bb76c7
·
verified ·
1 Parent(s): 1206be3

Create components/ethics.py

Browse files
Files changed (1) hide show
  1. components/ethics.py +220 -0
components/ethics.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import numpy as np
4
+ import random
5
+ import math
6
+ import matplotlib.pyplot as plt
7
+ import time
8
+ from typing import Callable, List, Tuple, Dict, Any
9
+
10
+ class QuantumInspiredMultiObjectiveOptimizer:
11
+ def __init__(self, objective_fns: List[Callable[[List[float]], float]],
12
+ dimension: int,
13
+ population_size: int = 100,
14
+ iterations: int = 200,
15
+ tunneling_prob: float = 0.2,
16
+ entanglement_factor: float = 0.5):
17
+
18
+ self.objective_fns = objective_fns
19
+ self.dimension = dimension
20
+ self.population_size = population_size
21
+ self.iterations = iterations
22
+ self.tunneling_prob = tunneling_prob
23
+ self.entanglement_factor = entanglement_factor
24
+
25
+ self.population = [self._random_solution() for _ in range(population_size)]
26
+ self.pareto_front = []
27
+
28
+ def _random_solution(self) -> List[float]:
29
+ return [random.uniform(-10, 10) for _ in range(self.dimension)]
30
+
31
+ def _tunnel(self, solution: List[float]) -> List[float]:
32
+ return [x + np.random.normal(0, 1) * random.choice([-1, 1])
33
+ if random.random() < self.tunneling_prob else x
34
+ for x in solution]
35
+
36
+ def _entangle(self, solution1: List[float], solution2: List[float]) -> List[float]:
37
+ return [(1 - self.entanglement_factor) * x + self.entanglement_factor * y
38
+ for x, y in zip(solution1, solution2)]
39
+
40
+ def _evaluate(self, solution: List[float]) -> List[float]:
41
+ return [fn(solution) for fn in self.objective_fns]
42
+
43
+ def _dominates(self, obj1: List[float], obj2: List[float]) -> bool:
44
+ return all(o1 <= o2 for o1, o2 in zip(obj1, obj2)) and any(o1 < o2 for o1, o2 in zip(obj1, obj2))
45
+
46
+ def _pareto_selection(self, scored_population: List[Tuple[List[float], List[float]]]) -> List[Tuple[List[float], List[float]]]:
47
+ pareto = []
48
+ for candidate in scored_population:
49
+ if not any(self._dominates(other[1], candidate[1]) for other in scored_population if other != candidate):
50
+ pareto.append(candidate)
51
+ unique_pareto = []
52
+ seen = set()
53
+ for sol, obj in pareto:
54
+ key = tuple(round(x, 6) for x in sol)
55
+ if key not in seen:
56
+ unique_pareto.append((sol, obj))
57
+ seen.add(key)
58
+ return unique_pareto
59
+
60
+ def optimize(self) -> Tuple[List[Tuple[List[float], List[float]]], float]:
61
+ start_time = time.time()
62
+ for _ in range(self.iterations):
63
+ scored_population = [(sol, self._evaluate(sol)) for sol in self.population]
64
+ pareto = self._pareto_selection(scored_population)
65
+ self.pareto_front = pareto
66
+
67
+ new_population = [p[0] for p in pareto]
68
+ while len(new_population) < self.population_size:
69
+ parent1 = random.choice(pareto)[0]
70
+ parent2 = random.choice(pareto)[0]
71
+ if parent1 == parent2:
72
+ parent2 = self._tunnel(parent2)
73
+ child = self._entangle(parent1, parent2)
74
+ child = self._tunnel(child)
75
+ new_population.append(child)
76
+
77
+ self.population = new_population
78
+
79
+ duration = time.time() - start_time
80
+ return self.pareto_front, duration
81
+
82
+ def simple_neural_activator(quantum_vec, chaos_vec):
83
+ q_sum = sum(quantum_vec)
84
+ c_var = np.var(chaos_vec)
85
+ activated = 1 if q_sum + c_var > 1 else 0
86
+ return activated
87
+
88
+ def codette_dream_agent(quantum_vec, chaos_vec):
89
+ dream_q = [np.sin(q * np.pi) for q in quantum_vec]
90
+ dream_c = [np.cos(c * np.pi) for c in chaos_vec]
91
+ return dream_q, dream_c
92
+
93
+ def philosophical_perspective(qv, cv):
94
+ m = np.max(qv) + np.max(cv)
95
+ if m > 1.3:
96
+ return "Philosophical Note: This universe is likely awake."
97
+ else:
98
+ return "Philosophical Note: Echoes in the void."
99
+
100
+ class EthicalMutationFilter:
101
+ def __init__(self, policies: Dict[str, Any]):
102
+ self.policies = policies
103
+ self.violations = []
104
+
105
+ def evaluate(self, quantum_vec: List[float], chaos_vec: List[float]) -> bool:
106
+ entropy = np.var(chaos_vec)
107
+ symmetry = 1.0 - abs(sum(quantum_vec)) / (len(quantum_vec) * 1.0)
108
+
109
+ if entropy > self.policies.get("max_entropy", float('inf')):
110
+ self.annotate_violation(f"Entropy {entropy:.2f} exceeds limit.")
111
+ return False
112
+
113
+ if symmetry < self.policies.get("min_symmetry", 0.0):
114
+ self.annotate_violation(f"Symmetry {symmetry:.2f} too low.")
115
+ return False
116
+
117
+ return True
118
+
119
+ def annotate_violation(self, reason: str):
120
+ print(f"\u26d4 Ethical Filter Violation: {reason}")
121
+ self.violations.append(reason)
122
+
123
+ if __name__ == '__main__':
124
+ ethical_policies = {
125
+ "max_entropy": 4.5,
126
+ "min_symmetry": 0.1,
127
+ "ban_negative_bias": True
128
+ }
129
+ ethical_filter = EthicalMutationFilter(ethical_policies)
130
+
131
+ def sphere(x: List[float]) -> float:
132
+ return sum(xi ** 2 for xi in x)
133
+
134
+ def rastrigin(x: List[float]) -> float:
135
+ return 10 * len(x) + sum(xi**2 - 10 * math.cos(2 * math.pi * xi) for xi in x)
136
+
137
+ optimizer = QuantumInspiredMultiObjectiveOptimizer(
138
+ objective_fns=[sphere, rastrigin],
139
+ dimension=20,
140
+ population_size=100,
141
+ iterations=200
142
+ )
143
+
144
+ pareto_front, duration = optimizer.optimize()
145
+ print(f"Quantum Optimizer completed in {duration:.2f} seconds")
146
+ print(f"Pareto front size: {len(pareto_front)}")
147
+
148
+ x_vals_q = [obj[0] for _, obj in pareto_front]
149
+ y_vals_q = [obj[1] for _, obj in pareto_front]
150
+
151
+ plt.scatter(x_vals_q, y_vals_q, c='blue', label='Quantum Optimizer')
152
+ plt.xlabel('Objective 1')
153
+ plt.ylabel('Objective 2')
154
+ plt.title('Pareto Front Visualization')
155
+ plt.legend()
156
+ plt.grid(True)
157
+ plt.show()
158
+
159
+ folder = '.'
160
+ quantum_states=[]
161
+ chaos_states=[]
162
+ proc_ids=[]
163
+ labels=[]
164
+ all_perspectives=[]
165
+ meta_mutations=[]
166
+
167
+ print("\nMeta Reflection Table:\n")
168
+ header = "Cocoon File | Quantum State | Chaos State | Neural | Dream Q/C | Philosophy"
169
+ print(header)
170
+ print('-'*len(header))
171
+
172
+ for fname in os.listdir(folder):
173
+ if fname.endswith('.cocoon'):
174
+ with open(os.path.join(folder, fname), 'r') as f:
175
+ try:
176
+ dct = json.load(f)['data']
177
+ q = dct.get('quantum_state', [0, 0])
178
+ c = dct.get('chaos_state', [0, 0, 0])
179
+
180
+ if not ethical_filter.evaluate(q, c):
181
+ continue
182
+
183
+ neural = simple_neural_activator(q, c)
184
+ dreamq, dreamc = codette_dream_agent(q, c)
185
+ phil = philosophical_perspective(q, c)
186
+
187
+ quantum_states.append(q)
188
+ chaos_states.append(c)
189
+ proc_ids.append(dct.get('run_by_proc', -1))
190
+ labels.append(fname)
191
+ all_perspectives.append(dct.get('perspectives', []))
192
+ meta_mutations.append({'file': fname, 'quantum': q, 'chaos': c, 'dreamQ': dreamq, 'dreamC': dreamc, 'neural': neural, 'philosophy': phil})
193
+ print(f"{fname} | {q} | {c} | {neural} | {dreamq}/{dreamc} | {phil}")
194
+ except Exception as e:
195
+ print(f"Warning: {fname} failed ({e})")
196
+
197
+ if meta_mutations:
198
+ dq0=[m['dreamQ'][0] for m in meta_mutations]
199
+ dc0=[m['dreamC'][0] for m in meta_mutations]
200
+ ncls=[m['neural'] for m in meta_mutations]
201
+
202
+ plt.figure(figsize=(8,6))
203
+ sc=plt.scatter(dq0, dc0, c=ncls, cmap='spring', s=100)
204
+ plt.xlabel('Dream Quantum[0]')
205
+ plt.ylabel('Dream Chaos[0]')
206
+ plt.title('Meta-Dream Codette Universes')
207
+ plt.colorbar(sc, label="Neural Activation Class")
208
+ plt.grid(True)
209
+ plt.show()
210
+
211
+ with open("codette_meta_summary.json", "w") as outfile:
212
+ json.dump(meta_mutations, outfile, indent=2)
213
+ print("\nExported meta-analysis to 'codette_meta_summary.json'")
214
+
215
+ if ethical_filter.violations:
216
+ with open("ethics_violation_log.json", "w") as vf:
217
+ json.dump(ethical_filter.violations, vf, indent=2)
218
+ print("\nExported ethics violations to 'ethics_violation_log.json'")
219
+ else:
220
+ print("\nNo ethical violations detected.")