using System.Collections.Generic; using Microsoft.ML; public class SentimentAnalysis { private readonly MLContext _mlContext; private PredictionEngine _predictionEngine; public SentimentAnalysis() { _mlContext = new MLContext(); // Initialize the model here } public void UpdateModelWithNewData(IEnumerable newData) { var trainData = _mlContext.Data.LoadFromEnumerable(newData); var pipeline = _mlContext.Transforms.Text.FeaturizeText("Features", nameof(SentimentData.Text)) .Append(_mlContext.BinaryClassification.Trainers.SdcaLogisticRegression(labelColumnName: nameof(SentimentData.Label), featureColumnName: "Features")); var model = pipeline.Fit(trainData); _predictionEngine = _mlContext.Model.CreatePredictionEngine(model); } // Other methods for sentiment analysis } public class SentimentData { public string Text { get; set; } public bool Label { get; set; } } public class SentimentPrediction { public bool Prediction { get; set; } public float Probability { get; set; } public float Score { get; set; } }