File size: 5,490 Bytes
7a01de3 ddd25b9 7a01de3 ddd25b9 7a01de3 81449e9 7a01de3 f7e23b0 ddd25b9 81449e9 7a01de3 ddd25b9 7a01de3 ddd25b9 7a01de3 ddd25b9 7a01de3 ddd25b9 7a01de3 ddd25b9 7a01de3 ddd25b9 7a01de3 ddd25b9 7a01de3 ddd25b9 7a01de3 ddd25b9 7a01de3 ddd25b9 7a01de3 ddd25b9 7a01de3 ddd25b9 7a01de3 ddd25b9 7a01de3 ddd25b9 7a01de3 ddd25b9 7a01de3 ddd25b9 7a01de3 bf33043 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import os
import asyncio
import logging
from typing import Optional, List, Union, Literal
from pathlib import Path
from pydantic import BaseModel, Field
from gradio import Interface, Blocks, Component
from gradio.data_classes import FileData, GradioModel, GradioRootModel
from transformers import pipeline
from diffusers import DiffusionPipeline
import torch
import gradio as gr
# Load gated image model
image_model = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
use_auth_token=os.getenv("HUGGINGFACE_TOKEN")
)
image_model.enable_model_cpu_offload()
# Define data models
class FileDataDict(BaseModel):
path: str
url: Optional[str] = None
size: Optional[int] = None
orig_name: Optional[str] = None
mime_type: Optional[str] = None
is_stream: Optional[bool] = False
class Config:
arbitrary_types_allowed = True
class MessageDict(BaseModel):
content: Union[str, FileDataDict, tuple, Component]
role: Literal["user", "assistant", "system"]
metadata: Optional[dict] = None
options: Optional[List[dict]] = None
class Config:
arbitrary_types_allowed = True
class ChatMessage(GradioModel):
role: Literal["user", "assistant", "system"]
content: Union[str, FileData, Component]
metadata: dict = Field(default_factory=dict)
options: Optional[List[dict]] = None
class Config:
arbitrary_types_allowed = True
class ChatbotDataMessages(GradioRootModel):
root: List[ChatMessage]
# Universal Reasoning Aggregator
class UniversalReasoning:
def __init__(self, config):
self.config = config
self.context_history = []
self.sentiment_analyzer = pipeline("sentiment-analysis")
self.deepseek_model = pipeline(
"text-classification",
model="distilbert-base-uncased-finetuned-sst-2-english",
truncation=True
)
self.davinci_model = pipeline(
"text2text-generation",
model="t5-small",
truncation=True
)
self.additional_model = pipeline(
"text-generation",
model="EleutherAI/gpt-neo-125M",
truncation=True
)
self.image_model = image_model
async def generate_response(self, question: str) -> str:
self.context_history.append(question)
sentiment_score = self.analyze_sentiment(question)
deepseek_response = self.deepseek_model(question)
davinci_response = self.davinci_model(question, max_length=50)
additional_response = self.additional_model(question, max_length=100)
responses = [
f"Sentiment score: {sentiment_score}",
f"DeepSeek Response: {deepseek_response}",
f"T5 Response: {davinci_response}",
f"Additional Model Response: {additional_response}"
]
return "\n\n".join(responses)
def generate_image(self, prompt: str):
image = self.image_model(
prompt,
height=1024,
width=1024,
guidance_scale=3.5,
num_inference_steps=50,
max_sequence_length=512,
generator=torch.Generator('cpu').manual_seed(0)
).images[0]
image.save("flux-dev.png")
return image
def analyze_sentiment(self, text: str) -> list:
sentiment_score = self.sentiment_analyzer(text)
logging.info(f"Sentiment analysis result: {sentiment_score}")
return sentiment_score
# Main Component
class MultimodalChatbot(Component):
def __init__(
self,
value: Optional[List[MessageDict]] = None,
label: Optional[str] = None,
render: bool = True,
log_file: Optional[Path] = None,
):
value = value or []
super().__init__(label=label, value=value)
self.log_file = log_file
self.render = render
self.data_model = ChatbotDataMessages
self.universal_reasoning = UniversalReasoning({})
def preprocess(self, payload: Optional[ChatbotDataMessages]) -> List[MessageDict]:
return payload.root if payload else []
def postprocess(self, messages: Optional[List[MessageDict]]) -> ChatbotDataMessages:
messages = messages or []
return ChatbotDataMessages(root=messages)
# Gradio Interface
class HuggingFaceChatbot:
def __init__(self):
self.chatbot = MultimodalChatbot(value=[])
def setup_interface(self):
async def chatbot_logic(input_text: str) -> str:
return await self.chatbot.universal_reasoning.generate_response(input_text)
def image_logic(prompt: str):
return self.chatbot.universal_reasoning.generate_image(prompt)
interface = Interface(
fn=chatbot_logic,
inputs="text",
outputs="text",
title="Hugging Face Multimodal Chatbot",
)
image_interface = Interface(
fn=image_logic,
inputs="text",
outputs="image",
title="Image Generator",
)
return Blocks([interface, image_interface])
def launch(self):
interface = self.setup_interface()
interface.launch()
# Standalone launch
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
chatbot = HuggingFaceChatbot()
chatbot.launch() |