|
import faicons as fa
|
|
import plotly.express as px
|
|
|
|
|
|
from shared import app_dir, bot_data
|
|
from shinywidgets import render_plotly
|
|
|
|
from shiny import reactive, render
|
|
from shiny.express import input, ui
|
|
|
|
data_rng = (min(bot_data.interactions), max(bot_data.interactions))
|
|
|
|
|
|
ui.page_opts(title="MyBot Interactions", fillable=True)
|
|
|
|
with ui.sidebar(open="desktop"):
|
|
ui.input_slider(
|
|
"interactions",
|
|
"Number of Interactions",
|
|
min=data_rng[0],
|
|
max=data_rng[1],
|
|
value=data_rng,
|
|
)
|
|
ui.input_checkbox_group(
|
|
"time_period",
|
|
"Time Period",
|
|
["Morning", "Afternoon", "Evening", "Night"],
|
|
selected=["Morning", "Afternoon", "Evening", "Night"],
|
|
inline=True,
|
|
)
|
|
ui.input_action_button("reset", "Reset filter")
|
|
|
|
|
|
ICONS = {
|
|
"user": fa.icon_svg("user", "regular"),
|
|
"chat": fa.icon_svg("comments"),
|
|
"interaction": fa.icon_svg("exchange-alt"),
|
|
"ellipsis": fa.icon_svg("ellipsis"),
|
|
}
|
|
|
|
with ui.layout_columns(fill=False):
|
|
with ui.value_box(showcase=ICONS["user"]):
|
|
"Total Users"
|
|
|
|
@render.express
|
|
def total_users():
|
|
bot_data_filtered().shape[0]
|
|
|
|
with ui.value_box(showcase=ICONS["chat"]):
|
|
"Average Interactions per User"
|
|
|
|
@render.express
|
|
def average_interactions():
|
|
d = bot_data_filtered()
|
|
if d.shape[0] > 0:
|
|
avg_interactions = d.interactions.mean()
|
|
f"{avg_interactions:.1f}"
|
|
|
|
with ui.value_box(showcase=ICONS["interaction"]):
|
|
"Total Interactions"
|
|
|
|
@render.express
|
|
def total_interactions():
|
|
d = bot_data_filtered()
|
|
if d.shape[0] > 0:
|
|
total_interactions = d.interactions.sum()
|
|
f"{total_interactions}"
|
|
|
|
with ui.layout_columns(col_widths=[6, 6, 12]):
|
|
with ui.card(full_screen=True):
|
|
ui.card_header("Interaction Data")
|
|
|
|
@render.data_frame
|
|
def table():
|
|
return render.DataGrid(bot_data_filtered())
|
|
|
|
with ui.card(full_screen=True):
|
|
with ui.card_header(class_="d-flex justify-content-between align-items-center"):
|
|
"Interactions Over Time"
|
|
with ui.popover(title="Add a color variable", placement="top"):
|
|
ICONS["ellipsis"]
|
|
ui.input_radio_buttons(
|
|
"scatter_color",
|
|
None,
|
|
["none", "user_type", "time_period"],
|
|
inline=True,
|
|
)
|
|
|
|
@render_plotly
|
|
def scatterplot():
|
|
color = input.scatter_color()
|
|
return px.scatter(
|
|
bot_data_filtered(),
|
|
x="time",
|
|
y="interactions",
|
|
color=None if color == "none" else color,
|
|
trendline="lowess",
|
|
)
|
|
|
|
with ui.card(full_screen=True):
|
|
with ui.card_header(class_="d-flex justify-content-between align-items-center"):
|
|
"Interaction Types"
|
|
with ui.popover(title="Add a color variable"):
|
|
ICONS["ellipsis"]
|
|
ui.input_radio_buttons(
|
|
"interaction_type",
|
|
"Split by:",
|
|
["user_type", "time_period"],
|
|
selected="user_type",
|
|
inline=True,
|
|
)
|
|
|
|
@render_plotly
|
|
def interaction_types():
|
|
from ridgeplot import ridgeplot
|
|
|
|
dat = bot_data_filtered()
|
|
yvar = input.interaction_type()
|
|
uvals = dat[yvar].unique()
|
|
|
|
samples = [[dat.interactions[dat[yvar] == val]] for val in uvals]
|
|
|
|
plt = ridgeplot(
|
|
samples=samples,
|
|
labels=uvals,
|
|
bandwidth=0.01,
|
|
colorscale="viridis",
|
|
colormode="row-index",
|
|
)
|
|
|
|
plt.update_layout(
|
|
legend=dict(
|
|
orientation="h", yanchor="bottom", y=1.02, xanchor="center", x=0.5
|
|
)
|
|
)
|
|
|
|
return plt
|
|
|
|
ui.include_css(app_dir / "styles.css")
|
|
|
|
|
|
|
|
|
|
|
|
@reactive.calc
|
|
def bot_data_filtered():
|
|
interactions = input.interactions()
|
|
idx1 = bot_data.interactions.between(interactions[0], interactions[1])
|
|
idx2 = bot_data.time_period.isin(input.time_period())
|
|
return bot_data[idx1 & idx2]
|
|
|
|
@reactive.effect
|
|
@reactive.event(input.reset)
|
|
def _():
|
|
ui.update_slider("interactions", value=data_rng)
|
|
ui.update_checkbox_group("time_period", selected=["Morning", "Afternoon", "Evening", "Night"]) |