|
import os
|
|
import logging
|
|
import random
|
|
from botbuilder.core import TurnContext, MessageFactory
|
|
from botbuilder.schema import Activity, ActivityTypes, EndOfConversationCodes
|
|
from tenacity import retry, wait_random_exponential, stop_after_attempt
|
|
import importlib
|
|
from sentiment_analysis import analyze_sentiment_vader
|
|
from config import load_and_validate_config, setup_logging
|
|
from universal_reasoning import UniversalReasoning
|
|
from dotenv import load_dotenv
|
|
import json
|
|
from chat import azure_chat_completion_request
|
|
from database import DatabaseConnection
|
|
|
|
|
|
load_dotenv()
|
|
|
|
class MyBot:
|
|
def __init__(self, conversation_state, user_state, dialog, universal_reasoning):
|
|
self.conversation_state = conversation_state
|
|
self.user_state = user_state
|
|
self.dialog = dialog
|
|
self.universal_reasoning = universal_reasoning
|
|
self.context = {}
|
|
self.feedback = []
|
|
config = load_and_validate_config('config.json', 'config_schema.json')
|
|
|
|
config['azure_openai_api_key'] = os.getenv('AZURE_OPENAI_API_KEY')
|
|
config['azure_openai_endpoint'] = os.getenv('AZURE_OPENAI_ENDPOINT')
|
|
config['luis_endpoint'] = os.getenv('LUIS_ENDPOINT')
|
|
config['luis_api_version'] = os.getenv('LUIS_API_VERSION')
|
|
config['luis_api_key'] = os.getenv('LUIS_API_KEY')
|
|
setup_logging(config)
|
|
|
|
async def enhance_context_awareness(self, user_id: str, text: str) -> None:
|
|
"""Enhance context awareness by analyzing the user's environment, activities, and emotional state."""
|
|
sentiment = analyze_sentiment_vader(text)
|
|
if user_id not in self.context:
|
|
self.context[user_id] = []
|
|
self.context[user_id].append({"text": text, "sentiment": sentiment})
|
|
|
|
async def proactive_learning(self, user_id: str, feedback: str) -> None:
|
|
"""Encourage proactive learning by seeking feedback and exploring new topics."""
|
|
if user_id not in self.context:
|
|
self.context[user_id] = []
|
|
self.context[user_id].append({"feedback": feedback})
|
|
self.feedback.append({"user_id": user_id, "feedback": feedback})
|
|
|
|
async def ethical_decision_making(self, user_id: str, decision: str) -> None:
|
|
"""Integrate ethical principles into decision-making processes."""
|
|
ethical_decision = f"Considering ethical principles, the decision is: {decision}"
|
|
if user_id not in self.context:
|
|
self.context[user_id] = []
|
|
self.context[user_id].append({"ethical_decision": ethical_decision})
|
|
|
|
async def emotional_intelligence(self, user_id: str, text: str) -> str:
|
|
"""Develop emotional intelligence by recognizing and responding to user emotions."""
|
|
sentiment = analyze_sentiment_vader(text)
|
|
response = self.generate_emotional_response(sentiment, text)
|
|
if user_id not in self.context:
|
|
self.context[user_id] = []
|
|
self.context[user_id].append({"emotional_response": response})
|
|
return response
|
|
|
|
def generate_emotional_response(self, sentiment: dict, text: str) -> str:
|
|
"""Generate an empathetic response based on the sentiment analysis."""
|
|
if sentiment['compound'] >= 0.05:
|
|
return "I'm glad to hear that! 😊 How can I assist you further?"
|
|
elif sentiment['compound'] <= -0.05:
|
|
return "I'm sorry to hear that. 😢 Is there anything I can do to help?"
|
|
else:
|
|
return "I understand. How can I assist you further?"
|
|
|
|
async def transparency_and_explainability(self, user_id: str, decision: str) -> str:
|
|
"""Enable transparency by explaining the reasoning behind decisions."""
|
|
explanation = f"The decision was made based on the following context: {self.context[user_id]}"
|
|
if user_id not in self.context:
|
|
self.context[user_id] = []
|
|
self.context[user_id].append({"explanation": explanation})
|
|
return explanation
|
|
|
|
async def on_message_activity(self, turn_context: TurnContext) -> None:
|
|
"""Handles incoming messages and generates responses."""
|
|
user_id = turn_context.activity.from_property.id
|
|
if user_id not in self.context:
|
|
self.context[user_id] = []
|
|
try:
|
|
if "end" in turn_context.activity.text.lower() or "stop" in turn_context.activity.text.lower():
|
|
await end_conversation(turn_context)
|
|
self.context.pop(user_id, None)
|
|
else:
|
|
self.context[user_id].append(turn_context.activity.text)
|
|
response = await self.generate_response(turn_context.activity.text, user_id)
|
|
await turn_context.send_activity(MessageFactory.text(response))
|
|
await self.request_feedback(turn_context, user_id)
|
|
|
|
|
|
with DatabaseConnection() as conn:
|
|
if conn:
|
|
cursor = conn.cursor()
|
|
cursor.execute("INSERT INTO UserMessages (UserId, Message) VALUES (?, ?)", user_id, turn_context.activity.text)
|
|
conn.commit()
|
|
|
|
except Exception as e:
|
|
await handle_error(turn_context, e)
|
|
|
|
async def generate_response(self, text: str, user_id: str) -> str:
|
|
"""Generates a response using Azure OpenAI's API, Universal Reasoning, and various perspectives."""
|
|
try:
|
|
logging.info(f"Generating response for user_id: {user_id} with text: {text}")
|
|
|
|
responses = []
|
|
for perspective in self.perspectives.values():
|
|
try:
|
|
response = await perspective.generate_response(text)
|
|
responses.append(response)
|
|
except Exception as e:
|
|
logging.error(f"Error generating response from {perspective.__class__.__name__}: {e}")
|
|
|
|
combined_response = "\n".join(responses)
|
|
logging.info(f"Combined response: {combined_response}")
|
|
return combined_response
|
|
except Exception as e:
|
|
logging.error(f"Error generating response: {e}")
|
|
return "Sorry, I couldn't generate a response at this time."
|
|
|
|
async def request_feedback(self, turn_context: TurnContext, user_id: str) -> None:
|
|
"""Request feedback from the user about the bot's response."""
|
|
feedback_prompt = "How would you rate my response? (good/neutral/bad)"
|
|
await turn_context.send_activity(MessageFactory.text(feedback_prompt))
|
|
|
|
async def handle_feedback(self, turn_context: TurnContext) -> None:
|
|
"""Handle user feedback and store it for future analysis."""
|
|
user_id = turn_context.activity.from_property.id
|
|
feedback = turn_context.activity.text.lower()
|
|
if feedback in ["good", "neutral", "bad"]:
|
|
self.feedback.append({"user_id": user_id, "feedback": feedback})
|
|
await turn_context.send_activity(MessageFactory.text("Thank you for your feedback!"))
|
|
else:
|
|
await turn_context.send_activity(MessageFactory.text("Please provide feedback as 'good', 'neutral', or 'bad'."))
|
|
|
|
async def end_conversation(turn_context: TurnContext) -> None:
|
|
"""Ends the conversation with the user."""
|
|
await turn_context.send_activity(
|
|
MessageFactory.text("Ending conversation from the skill...")
|
|
)
|
|
end_of_conversation = Activity(type=ActivityTypes.end_of_conversation)
|
|
end_of_conversation.code = EndOfConversationCodes.completed_successfully
|
|
await turn_context.send_activity(end_of_conversation)
|
|
|
|
async def handle_error(turn_context: TurnContext, error: Exception) -> None:
|
|
"""Handles errors by logging them and notifying the user."""
|
|
logging.error(f"An error occurred: {error}")
|
|
await turn_context.send_activity(
|
|
MessageFactory.text("An error occurred. Please try again later.")
|
|
)
|
|
|
|
def show_privacy_consent() -> bool:
|
|
"""Display a pop-up window to obtain user consent for data collection and privacy."""
|
|
import tkinter as tk
|
|
|
|
def on_accept():
|
|
user_consent.set(True)
|
|
root.destroy()
|
|
|
|
def on_decline():
|
|
user_consent.set(False)
|
|
root.destroy()
|
|
|
|
root = tk.Tk()
|
|
root.title("Data Permission and Privacy")
|
|
message = ("We value your privacy. By using this application, you consent to the collection and use of your data "
|
|
"as described in our privacy policy. Do you agree to proceed?")
|
|
label = tk.Label(root, text=message, wraplength=400, justify="left")
|
|
label.pack(padx=20, pady=20)
|
|
button_frame = tk.Frame(root)
|
|
button_frame.pack(pady=10)
|
|
accept_button = tk.Button(button_frame, text="Accept", command=on_accept)
|
|
accept_button.pack(side="left", padx=10)
|
|
decline_button = tk.Button(button_frame, text="Decline", command=on_decline)
|
|
decline_button.pack(side="right", padx=10)
|
|
user_consent = tk.BooleanVar()
|
|
root.mainloop()
|
|
return user_consent.get()
|
|
|
|
|
|
bot = MyBot()
|
|
|
|
|
|
def newton_thoughts(question: str) -> str:
|
|
"""Apply Newton's laws to the given question."""
|
|
return apply_newtons_laws(question)
|
|
|
|
def apply_newtons_laws(question: str) -> str:
|
|
"""Apply Newton's laws to the given question."""
|
|
if not question:
|
|
return 'No question to think about.'
|
|
complexity = len(question)
|
|
force = mass_of_thought(question) * acceleration_of_thought(complexity)
|
|
return f'Thought force: {force}'
|
|
|
|
def mass_of_thought(question: str) -> int:
|
|
"""Calculate the mass of thought based on the question length."""
|
|
return len(question)
|
|
|
|
def acceleration_of_thought(complexity: int) -> float:
|
|
"""Calculate the acceleration of thought based on the complexity."""
|
|
return complexity / 2
|
|
|
|
def davinci_insights(question: str) -> str:
|
|
"""Generate insights like Da Vinci for the given question."""
|
|
return think_like_davinci(question)
|
|
|
|
def think_like_davinci(question: str) -> str:
|
|
"""Generate insights like Da Vinci for the given question."""
|
|
perspectives = [
|
|
f"What if we view '{question}' from the perspective of the stars?",
|
|
f"Consider '{question}' as if it's a masterpiece of the universe.",
|
|
f"Reflect on '{question}' through the lens of nature's design."
|
|
]
|
|
return random.choice(perspectives)
|
|
|
|
def human_intuition(question: str) -> str:
|
|
"""Provide human intuition for the given question."""
|
|
intuition = [
|
|
"How does this question make you feel?",
|
|
"What emotional connection do you have with this topic?",
|
|
"What does your gut instinct tell you about this?"
|
|
]
|
|
return random.choice(intuition)
|
|
|
|
def neural_network_thinking(question: str) -> str:
|
|
"""Apply neural network thinking to the given question."""
|
|
neural_perspectives = [
|
|
f"Process '{question}' through a multi-layered neural network.",
|
|
f"Apply deep learning to uncover hidden insights about '{question}'.",
|
|
f"Use machine learning to predict patterns in '{question}'."
|
|
]
|
|
return random.choice(neural_perspectives)
|
|
|
|
def quantum_computing_thinking(question: str) -> str:
|
|
"""Apply quantum computing principles to the given question."""
|
|
quantum_perspectives = [
|
|
f"Consider '{question}' using quantum superposition principles.",
|
|
f"Apply quantum entanglement to find connections in '{question}'.",
|
|
f"Utilize quantum computing to solve '{question}' more efficiently."
|
|
]
|
|
return random.choice(quantum_perspectives)
|
|
|
|
def resilient_kindness(question: str) -> str:
|
|
"""Provide perspectives of resilient kindness."""
|
|
kindness_perspectives = [
|
|
"Despite losing everything, seeing life as a chance to grow.",
|
|
"Finding strength in kindness after facing life's hardest trials.",
|
|
"Embracing every challenge as an opportunity for growth and compassion."
|
|
]
|
|
return random.choice(kindness_perspectives)
|
|
|
|
def identify_and_refute_fallacies(argument: str) -> str:
|
|
"""Identify and refute common logical fallacies in the argument."""
|
|
refutations = [
|
|
"This is an ad hominem fallacy. Let's focus on the argument itself rather than attacking the person.",
|
|
"This is a straw man fallacy. The argument is being misrepresented.",
|
|
"This is a false dilemma fallacy. There are more options than presented.",
|
|
"This is a slippery slope fallacy. The conclusion does not necessarily follow from the premise.",
|
|
"This is circular reasoning. The argument's conclusion is used as a premise.",
|
|
"This is a hasty generalization. The conclusion is based on insufficient evidence.",
|
|
"This is a red herring fallacy. The argument is being diverted to an irrelevant topic.",
|
|
"This is a post hoc ergo propter hoc fallacy. Correlation does not imply causation.",
|
|
"This is an appeal to authority fallacy. The argument relies on the opinion of an authority figure.",
|
|
"This is a bandwagon fallacy. The argument assumes something is true because many people believe it.",
|
|
"This is a false equivalence fallacy. The argument equates two things that are not equivalent."
|
|
]
|
|
return random.choice(refutations)
|
|
|
|
def universal_reasoning(question: str) -> str:
|
|
"""Generate a comprehensive response using various reasoning methods."""
|
|
responses = [
|
|
newton_thoughts(question),
|
|
davinci_insights(question),
|
|
human_intuition(question),
|
|
neural_network_thinking(question),
|
|
quantum_computing_thinking(question),
|
|
resilient_kindness(question),
|
|
identify_and_refute_fallacies(question)
|
|
]
|
|
return "\n".join(responses)
|
|
|
|
@retry(wait=wait_random_exponential(min=1, max=40), stop=stop_after_attempt(3))
|
|
def chat_completion_request(messages: list, deployment_id: str) -> str:
|
|
"""Make a chat completion request to Azure OpenAI."""
|
|
try:
|
|
import openai
|
|
response = openai.ChatCompletion.create(
|
|
engine=deployment_id,
|
|
messages=messages
|
|
)
|
|
return response.choices[0].message.content.strip()
|
|
except openai.error.OpenAIError as e:
|
|
logging.error("Unable to generate ChatCompletion response")
|
|
logging.error(f"Exception: {e}")
|
|
return f"Error: {e}"
|
|
|
|
def get_internet_answer(question: str, deployment_id: str) -> str:
|
|
"""Get an answer using Azure OpenAI's chat completion request."""
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{"role": "user", "content": question}
|
|
]
|
|
return chat_completion_request(messages, deployment_id=deployment_id)
|
|
|
|
def reflect_on_decisions() -> str:
|
|
"""Regularly reflect on your decisions and processes used."""
|
|
reflection_message = (
|
|
"Regularly reflecting on your decisions, the processes you used, the information you considered, "
|
|
"and the perspectives you may have missed. Reflection is a cornerstone of learning from experience."
|
|
)
|
|
return reflection_message
|
|
|
|
def process_questions_from_json(file_path: str):
|
|
"""Process questions from a JSON file and call the appropriate functions."""
|
|
with open(file_path, 'r') as file:
|
|
questions_data = json.load(file)
|
|
for question_data in questions_data:
|
|
question = question_data['question']
|
|
print(f"Question: {question}")
|
|
|
|
for function_data in question_data['functions']:
|
|
function_name = function_data['name']
|
|
function_description = function_data['description']
|
|
function_parameters = function_data['parameters']
|
|
|
|
print(f"Function: {function_name}")
|
|
print(f"Description: {function_description}")
|
|
|
|
|
|
if function_name in globals():
|
|
function = globals()[function_name]
|
|
response = function(**function_parameters)
|
|
print(f"Response: {response}")
|
|
else:
|
|
print(f"Function {function_name} not found.")
|
|
|
|
if __name__ == "__main__":
|
|
if show_privacy_consent():
|
|
process_questions_from_json('questions.json')
|
|
question = "What is the meaning of life?"
|
|
deployment_id = "your-deployment-name"
|
|
print("Newton's Thoughts:", newton_thoughts(question))
|
|
print("Da Vinci's Insights:", davinci_insights(question))
|
|
print("Human Intuition:", human_intuition(question))
|
|
print("Neural Network Thinking:", neural_network_thinking(question))
|
|
print("Quantum Computing Thinking:", quantum_computing_thinking(question))
|
|
print("Resilient Kindness:", resilient_kindness(question))
|
|
print("Universal Reasoning:", universal_reasoning(question))
|
|
print("Internet Answer:", get_internet_answer(question, deployment_id))
|
|
else:
|
|
print("User did not consent to data collection. Exiting application.")
|
|
print(reflect_on_decisions())
|
|
|