black-forest-labs-FLUX.1-dev / final_codettes_chatbot.py
Raiff1982's picture
Rename app.py to final_codettes_chatbot.py
cba827e verified
raw
history blame
4.67 kB
import os
import asyncio
import logging
from typing import Optional, List, Union, Literal
from pathlib import Path
from pydantic import BaseModel, Field
from gradio import Interface, Blocks
from gradio.components import Textbox, Image
from gradio.data_classes import FileData, GradioModel, GradioRootModel
from transformers import pipeline
from diffusers import DiffusionPipeline
import torch
import gradio as gr
# Load gated image model securely
hf_token = os.getenv("HUGGINGFACE_TOKEN")
if not hf_token:
raise RuntimeError("Missing HUGGINGFACE_TOKEN env var for gated model access.")
image_model = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
use_auth_token=hf_token
)
image_model.enable_model_cpu_offload()
# Data models
class FileDataDict(BaseModel):
path: str
url: Optional[str] = None
size: Optional[int] = None
orig_name: Optional[str] = None
mime_type: Optional[str] = None
is_stream: Optional[bool] = False
class Config:
arbitrary_types_allowed = True
class MessageDict(BaseModel):
content: Union[str, FileDataDict, tuple, str]
role: Literal["user", "assistant", "system"]
metadata: Optional[dict] = None
options: Optional[List[dict]] = None
class Config:
arbitrary_types_allowed = True
class ChatMessage(GradioModel):
role: Literal["user", "assistant", "system"]
content: Union[str, FileData, str]
metadata: dict = Field(default_factory=dict)
options: Optional[List[dict]] = None
class Config:
arbitrary_types_allowed = True
class ChatbotDataMessages(GradioRootModel):
root: List[ChatMessage]
# Reasoning Engine
class UniversalReasoning:
def __init__(self, config):
self.config = config
self.context_history = []
self.sentiment_analyzer = pipeline("sentiment-analysis")
self.deepseek_model = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
self.davinci_model = pipeline("text2text-generation", model="t5-small")
self.additional_model = pipeline("text-generation", model="EleutherAI/gpt-neo-125M")
self.image_model = image_model
async def generate_response(self, question: str) -> str:
self.context_history.append(question)
sentiment_score = self.analyze_sentiment(question)
deepseek_response = self.deepseek_model(question)
davinci_response = self.davinci_model(question, max_length=50)
additional_response = self.additional_model(question, max_length=100)
responses = [
f"Sentiment score: {sentiment_score}",
f"DeepSeek Response: {deepseek_response}",
f"T5 Response: {davinci_response}",
f"GPT-Neo Response: {additional_response}"
]
return "\n\n".join(responses)
def generate_image(self, prompt: str):
image = self.image_model(
prompt,
height=1024,
width=1024,
guidance_scale=3.5,
num_inference_steps=50,
generator=torch.Generator('cpu').manual_seed(0)
).images[0]
image.save("flux-dev.png")
return image
def analyze_sentiment(self, text: str) -> list:
sentiment_score = self.sentiment_analyzer(text)
logging.info(f"Sentiment analysis result: {sentiment_score}")
return sentiment_score
# Main Gradio App
class HuggingFaceChatbot:
def __init__(self):
self.universal_reasoning = UniversalReasoning(config={})
def setup_interface(self):
async def chatbot_logic(input_text: str) -> str:
return await self.universal_reasoning.generate_response(input_text)
def image_logic(prompt: str):
return self.universal_reasoning.generate_image(prompt)
text_interface = Interface(
fn=chatbot_logic,
inputs=Textbox(label="Ask anything"),
outputs=Textbox(label="Reasoned Answer"),
title="🧠 Codettes-BlackForest Chatbot"
)
image_interface = Interface(
fn=image_logic,
inputs=Textbox(label="Describe an image"),
outputs=Image(label="Generated Image"),
title="🎨 Image Generator (FLUX.1-dev)"
)
return Blocks([text_interface, image_interface])
def launch(self):
app = self.setup_interface()
app.launch()
# Launch the app
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
HuggingFaceChatbot().launch()