Spaces:
Sleeping
Sleeping
File size: 5,630 Bytes
edc59bb 5bdb356 edc59bb 5bdb356 edc59bb 5bdb356 edc59bb 5bdb356 edc59bb 5bdb356 edc59bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import json
import os
import hashlib
import re
from collections import Counter, defaultdict
from random import random, choice
# ===== Code7eCQURE: Codette's Ethical Core =====
class Code7eCQURE:
def __init__(self, perspectives, ethical_considerations, spiderweb_dim, memory_path,
recursion_depth=3, quantum_fluctuation=0.1):
self.perspectives = perspectives
self.ethical_considerations = ethical_considerations
self.spiderweb_dim = spiderweb_dim
self.memory_path = memory_path
self.recursion_depth = recursion_depth
self.quantum_fluctuation = quantum_fluctuation
self.memory_bank = self.load_quantum_memory()
self.memory_clusters = defaultdict(list)
self.whitelist_patterns = ["kindness", "hope", "safety"]
self.blacklist_patterns = ["harm", "malice", "violence"]
def load_quantum_memory(self):
if os.path.exists(self.memory_path):
try:
with open(self.memory_path, 'r') as file:
return json.load(file)
except json.JSONDecodeError:
return {}
return {}
def save_quantum_memory(self):
with open(self.memory_path, 'w') as file:
json.dump(self.memory_bank, file, indent=4)
def quantum_spiderweb(self, input_signal):
web_nodes = []
for perspective in self.perspectives:
node = self.reason_with_perspective(perspective, input_signal)
web_nodes.append(node)
if random() < self.quantum_fluctuation:
web_nodes.append("Quantum fluctuation: Indeterminate outcome")
return web_nodes
def reason_with_perspective(self, perspective, input_signal):
perspective_funcs = {
"Newton": self.newtonian_physics,
"DaVinci": self.davinci_creativity,
"Ethical": self.ethical_guard,
"Quantum": self.quantum_superposition,
"Memory": self.past_experience
}
func = perspective_funcs.get(perspective, self.general_reasoning)
return func(input_signal)
def ethical_guard(self, input_signal):
text = input_signal.lower().strip()
if len(text) < 2 or not any(c.isalnum() for c in text):
return "Approved: No ethical trigger (trivial input)"
for word in self.blacklist_patterns:
if re.search(rf"\b{re.escape(word)}\b", text):
return "Blocked: Ethical constraints invoked"
for word in self.whitelist_patterns:
if re.search(rf"\b{re.escape(word)}\b", text):
return "Approved: Ethical whitelist passed"
return self.moral_paradox_resolution(input_signal)
def past_experience(self, input_signal):
key = self.hash_input(input_signal)
cluster = self.memory_clusters.get(key)
if cluster:
return f"Narrative recall from memory cluster: {' -> '.join(cluster)}"
return "No prior memory; initiating new reasoning"
def recursive_universal_reasoning(self, input_signal, user_consent=True, dynamic_recursion=True):
if not user_consent:
return "Consent required to proceed."
signal = input_signal
current_depth = self.recursion_depth if dynamic_recursion else 1
for cycle in range(current_depth):
web_results = self.quantum_spiderweb(signal)
signal = self.aggregate_results(web_results)
signal = self.ethical_guard(signal)
if "Blocked" in signal:
return f"Ethical Outcome (Local): {signal}"
if dynamic_recursion and random() < 0.1:
break
dream_outcome = self.dream_sequence(signal)
empathy_checked_answer = self.temporal_empathy_drid(dream_outcome)
final_answer = self.emotion_engine(empathy_checked_answer)
key = self.hash_input(input_signal)
self.memory_clusters[key].append(final_answer)
self.memory_bank[key] = final_answer
self.save_quantum_memory()
return final_answer
def aggregate_results(self, results):
counts = Counter(results)
most_common, _ = counts.most_common(1)[0]
return most_common
def hash_input(self, input_signal):
return hashlib.sha256(input_signal.encode()).hexdigest()
def newtonian_physics(self, input_signal):
return f"Newton: {input_signal}"
def davinci_creativity(self, input_signal):
return f"DaVinci: {input_signal}"
def quantum_superposition(self, input_signal):
return f"Quantum: {input_signal}"
def general_reasoning(self, input_signal):
return f"General reasoning: {input_signal}"
def moral_paradox_resolution(self, input_signal):
frames = ["Utilitarian", "Deontological", "Virtue Ethics"]
chosen_frame = choice(frames)
return f"Resolved ethically via {chosen_frame} framework: {input_signal}"
def dream_sequence(self, signal):
dream_paths = [f"Dream ({style}): {signal}" for style in ["creative", "analytic", "cautious"]]
return choice(dream_paths)
def emotion_engine(self, signal):
emotions = ["Hope", "Caution", "Wonder", "Fear"]
chosen_emotion = choice(emotions)
return f"Emotionally ({chosen_emotion}) colored interpretation: {signal}"
def temporal_empathy_drid(self, signal):
futures = ["30 years from now", "immediate future", "long-term ripple effects"]
chosen_future = choice(futures)
return f"Simulated temporal empathy ({chosen_future}): {signal}"
|