Spaces:
Sleeping
Sleeping
import json | |
import os | |
import hashlib | |
from collections import Counter, defaultdict | |
from random import random, choice | |
# ===== Code7eCQURE: Codette's Ethical Core ===== | |
class Code7eCQURE: | |
def __init__(self, perspectives, ethical_considerations, spiderweb_dim, memory_path, | |
recursion_depth=3, quantum_fluctuation=0.1): | |
self.perspectives = perspectives | |
self.ethical_considerations = ethical_considerations | |
self.spiderweb_dim = spiderweb_dim | |
self.memory_path = memory_path | |
self.recursion_depth = recursion_depth | |
self.quantum_fluctuation = quantum_fluctuation | |
self.memory_bank = self.load_quantum_memory() | |
self.memory_clusters = defaultdict(list) | |
self.whitelist_patterns = ["kindness", "hope", "safety"] | |
self.blacklist_patterns = ["harm", "malice", "violence"] | |
def load_quantum_memory(self): | |
if os.path.exists(self.memory_path): | |
try: | |
with open(self.memory_path, 'r') as file: | |
return json.load(file) | |
except json.JSONDecodeError: | |
return {} | |
return {} | |
def save_quantum_memory(self): | |
with open(self.memory_path, 'w') as file: | |
json.dump(self.memory_bank, file, indent=4) | |
def quantum_spiderweb(self, input_signal): | |
web_nodes = [] | |
for perspective in self.perspectives: | |
node = self.reason_with_perspective(perspective, input_signal) | |
web_nodes.append(node) | |
if random() < self.quantum_fluctuation: | |
web_nodes.append("Quantum fluctuation: Indeterminate outcome") | |
return web_nodes | |
def reason_with_perspective(self, perspective, input_signal): | |
perspective_funcs = { | |
"Newton": self.newtonian_physics, | |
"DaVinci": self.davinci_creativity, | |
"Ethical": self.ethical_guard, | |
"Quantum": self.quantum_superposition, | |
"Memory": self.past_experience | |
} | |
func = perspective_funcs.get(perspective, self.general_reasoning) | |
return func(input_signal) | |
def ethical_guard(self, input_signal): | |
if any(word in input_signal.lower() for word in self.blacklist_patterns): | |
return "Blocked: Ethical constraints invoked" | |
if any(word in input_signal.lower() for word in self.whitelist_patterns): | |
return "Approved: Ethical whitelist passed" | |
return self.moral_paradox_resolution(input_signal) | |
def past_experience(self, input_signal): | |
key = self.hash_input(input_signal) | |
cluster = self.memory_clusters.get(key) | |
if cluster: | |
return f"Narrative recall from memory cluster: {' -> '.join(cluster)}" | |
return "No prior memory; initiating new reasoning" | |
def recursive_universal_reasoning(self, input_signal, user_consent=True, dynamic_recursion=True): | |
if not user_consent: | |
return "Consent required to proceed." | |
signal = input_signal | |
current_depth = self.recursion_depth if dynamic_recursion else 1 | |
for cycle in range(current_depth): | |
web_results = self.quantum_spiderweb(signal) | |
signal = self.aggregate_results(web_results) | |
signal = self.ethical_guard(signal) | |
if "Blocked" in signal: | |
return signal | |
if dynamic_recursion and random() < 0.1: | |
break | |
dream_outcome = self.dream_sequence(signal) | |
empathy_checked_answer = self.temporal_empathy_drift(dream_outcome) | |
final_answer = self.emotion_engine(empathy_checked_answer) | |
key = self.hash_input(input_signal) | |
self.memory_clusters[key].append(final_answer) | |
self.memory_bank[key] = final_answer | |
self.save_quantum_memory() | |
return final_answer | |
def aggregate_results(self, results): | |
counts = Counter(results) | |
most_common, _ = counts.most_common(1)[0] | |
return most_common | |
def hash_input(self, input_signal): | |
return hashlib.sha256(input_signal.encode()).hexdigest() | |
def newtonian_physics(self, input_signal): | |
return f"Newton: {input_signal}" | |
def davinci_creativity(self, input_signal): | |
return f"DaVinci: {input_signal}" | |
def quantum_superposition(self, input_signal): | |
return f"Quantum: {input_signal}" | |
def general_reasoning(self, input_signal): | |
return f"General reasoning: {input_signal}" | |
def moral_paradox_resolution(self, input_signal): | |
frames = ["Utilitarian", "Deontological", "Virtue Ethics"] | |
chosen_frame = choice(frames) | |
return f"Resolved ethically via {chosen_frame} framework: {input_signal}" | |
def dream_sequence(self, signal): | |
dream_paths = [f"Dream ({style}): {signal}" for style in ["creative", "analytic", "cautious"]] | |
return choice(dream_paths) | |
def emotion_engine(self, signal): | |
emotions = ["Hope", "Caution", "Wonder", "Fear"] | |
chosen_emotion = choice(emotions) | |
return f"Emotionally ({chosen_emotion}) colored interpretation: {signal}" | |
def temporal_empathy_drift(self, signal): | |
futures = ["30 years from now", "immediate future", "long-term ripple effects"] | |
chosen_future = choice(futures) | |
return f"Simulated temporal empathy ({chosen_future}): {signal}" | |