Spaces:
Paused
Paused
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from AICoreAGIX_with_TB import AICoreAGIX # Ensure this imports your AICoreAGIX class | |
# Initialize the AI core | |
ai_core = AICoreAGIX() | |
def respond(message, history, system_message, max_tokens, temperature, top_p, image, audio): | |
# Process the uploaded files | |
if image and audio: | |
# Save the uploaded files to disk or process them as needed | |
image_path = "uploaded_image.png" | |
audio_path = "uploaded_audio.wav" | |
image.save(image_path) | |
audio.save(audio_path) | |
# Run TB diagnostics | |
tb_result = ai_core.run_tb_diagnostics(image_path, audio_path, user_id=1) # Replace with actual user_id handling | |
# Incorporate TB diagnostic results into the response | |
tb_message = f"TB Diagnostic Result: {tb_result['tb_risk']}\n" | |
tb_message += f"Image Analysis: {tb_result['image_analysis']}\n" | |
tb_message += f"Audio Analysis: {tb_result['audio_analysis']}\n" | |
tb_message += f"Shareable Link: {tb_result['shareable_link']}\n\n" | |
else: | |
tb_message = "No TB diagnostic data provided.\n\n" | |
# Existing chat functionality | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, bot_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if bot_msg: | |
messages.append({"role": "assistant", "content": bot_msg}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield tb_message + response | |
# Define the Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
gr.inputs.Image(type="pil", label="Upload Saliva Microscopy Image"), | |
gr.inputs.Audio(type="file", label="Upload Cough Audio Recording"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |