codriao / app.py
Raiff1982's picture
Update app.py
0164aee verified
raw
history blame
2.47 kB
import gradio as gr
from huggingface_hub import InferenceClient
from AICoreAGIX_with_TB import AICoreAGIX # Ensure this imports your AICoreAGIX class
# Initialize the AI core
ai_core = AICoreAGIX()
def respond(message, history, system_message, max_tokens, temperature, top_p, image, audio):
# Process the uploaded files
if image and audio:
# Save the uploaded files to disk or process them as needed
image_path = "uploaded_image.png"
audio_path = "uploaded_audio.wav"
image.save(image_path)
audio.save(audio_path)
# Run TB diagnostics
tb_result = ai_core.run_tb_diagnostics(image_path, audio_path, user_id=1) # Replace with actual user_id handling
# Incorporate TB diagnostic results into the response
tb_message = f"TB Diagnostic Result: {tb_result['tb_risk']}\n"
tb_message += f"Image Analysis: {tb_result['image_analysis']}\n"
tb_message += f"Audio Analysis: {tb_result['audio_analysis']}\n"
tb_message += f"Shareable Link: {tb_result['shareable_link']}\n\n"
else:
tb_message = "No TB diagnostic data provided.\n\n"
# Existing chat functionality
messages = [{"role": "system", "content": system_message}]
for user_msg, bot_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if bot_msg:
messages.append({"role": "assistant", "content": bot_msg})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield tb_message + response
# Define the Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
gr.inputs.Image(type="pil", label="Upload Saliva Microscopy Image"),
gr.inputs.Audio(type="file", label="Upload Cough Audio Recording"),
],
)
if __name__ == "__main__":
demo.launch()