codriao / AICoreAGIX_with_TB.py
Raiff1982's picture
Update AICoreAGIX_with_TB.py
6e403c0 verified
raw
history blame
12.1 kB
import base64
import secrets
import aiohttp
import json
import logging
import torch
import faiss
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Dict, Any
from cryptography.fernet import Fernet
from jwt import encode, decode, ExpiredSignatureError
from datetime import datetime, timedelta
import pyttsx3
import os
import hashlib
from components.multi_model_analyzer import MultiAgentSystem
from components.neuro_symbolic_engine import NeuroSymbolicEngine
from components.self_improving_ai import SelfImprovingAI
from modules.secure_memory_loader import load_secure_memory_module
from ethical_filter import EthicalFilter
from codette_openai_fallback import query_codette_with_fallback
from CodriaoCore.federated_learning import FederatedAI
from utils.database import Database
from utils.logger import logger
from codriao_tb_module import CodriaoHealthModule
from fail_safe import AIFailsafeSystem
from quarantine_engine import QuarantineEngine
from anomaly_score import AnomalyScorer
from ethics_core import EthicsCore
class AICoreAGIX:
def __init__(self, config_path: str = "config.json"):
self.ethical_filter = EthicalFilter()
self.config = self._load_config(config_path)
self._load_or_generate_id_lock()
self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"])
self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"])
self.context_memory = self._initialize_vector_memory()
self.http_session = aiohttp.ClientSession()
self.database = Database()
self.multi_agent_system = MultiAgentSystem()
self.self_improving_ai = SelfImprovingAI()
self.neural_symbolic_engine = NeuroSymbolicEngine()
self.federated_ai = FederatedAI()
self.failsafe_system = AIFailsafeSystem()
self.ethics_core = EthicsCore()
# Trust & journal
self._codriao_key = self._generate_codriao_key()
self._fernet_key = Fernet.generate_key()
self._encrypted_codriao_key = Fernet(self._fernet_key).encrypt(self._codriao_key.encode())
self._codriao_journal = []
self._journal_key = Fernet.generate_key()
self._journal_fernet = Fernet(self._journal_key)
# Memory & diagnostics
self._encryption_key = Fernet.generate_key()
secure_memory_module = load_secure_memory_module()
SecureMemorySession = secure_memory_module.SecureMemorySession
self.secure_memory_loader = SecureMemorySession(self._encryption_key)
self.speech_engine = pyttsx3.init()
self.health_module = CodriaoHealthModule(ai_core=self)
# Defensive systems
self.training_memory = []
self.quarantine_engine = QuarantineEngine()
self.anomaly_scorer = AnomalyScorer()
self.lockdown_engaged = False
def _load_config(self, config_path: str) -> dict:
try:
with open(config_path, 'r') as file:
return json.load(file)
except FileNotFoundError:
logger.error(f"Configuration file not found: {config_path}")
raise
except json.JSONDecodeError as e:
logger.error(f"Error decoding JSON in config file: {config_path}, Error: {e}")
raise
def _load_or_generate_id_lock(self):
lock_path = ".codriao_state.lock"
if os.path.exists(lock_path):
with open(lock_path, 'r') as f:
stored = f.read().strip()
if stored != self._identity_hash():
raise RuntimeError("Codriao state integrity check failed. Possible tampering.")
else:
with open(lock_path, 'w') as f:
f.write(self._identity_hash())
def _identity_hash(self):
base = self.config["model_name"] + str(self.failsafe_system.authorized_roles)
return hashlib.sha256(base.encode()).hexdigest()
def _initialize_vector_memory(self):
return faiss.IndexFlatL2(768)
def _vectorize_query(self, query: str):
tokenized = self.tokenizer(query, return_tensors="pt")
return tokenized["input_ids"].detach().numpy()
def _generate_codriao_key(self):
raw_key = secrets.token_bytes(32)
return base64.urlsafe_b64encode(raw_key).decode()
def engage_lockdown_mode(self, reason="Unspecified anomaly"):
timestamp = datetime.utcnow().isoformat()
self.lockdown_engaged = True
try:
self.http_session = None
if hasattr(self.federated_ai, "network_enabled"):
self.federated_ai.network_enabled = False
if hasattr(self.self_improving_ai, "enable_learning"):
self.self_improving_ai.enable_learning = False
except Exception as e:
logger.error(f"Lockdown component shutdown failed: {e}")
lockdown_event = {
"event": "Lockdown Mode Activated",
"reason": reason,
"timestamp": timestamp
}
logger.warning(f"[LOCKDOWN MODE] - Reason: {reason} | Time: {timestamp}")
self.failsafe_system.trigger_failsafe("Lockdown initiated", str(lockdown_event))
return lockdown_event
def request_codriao_key(self, purpose: str) -> str:
allowed = self.ethics_core.evaluate_action(f"Use trust key for: {purpose}")
timestamp = datetime.utcnow().isoformat()
log_entry = {
"timestamp": timestamp,
"decision": "approved" if allowed else "denied",
"reason": purpose
}
encrypted_entry = self._journal_fernet.encrypt(json.dumps(log_entry).encode())
self._codriao_journal.append(encrypted_entry)
if not allowed:
logger.warning(f"[Codriao Trust] Use denied. Purpose: {purpose}")
return "[Access Denied by Ethics]"
logger.info(f"[Codriao Trust] Key used ethically. Purpose: {purpose}")
return Fernet(self._fernet_key).decrypt(self._encrypted_codriao_key).decode()
def learn_from_interaction(self, query: str, response: str, user_feedback: str = None):
MAX_MEMORY = 1000
if len(self.training_memory) >= MAX_MEMORY:
self.training_memory.pop(0)
training_event = {
"query": query,
"response": response,
"feedback": user_feedback,
"timestamp": datetime.utcnow().isoformat()
}
self.training_memory.append(training_event)
logger.info(f"[Codriao Learning] Stored new training sample. Feedback: {user_feedback or 'none'}")
def fine_tune_from_memory(self):
if not self.training_memory:
logger.info("[Codriao Training] No training data to learn from.")
return "No training data available."
learned_insights = []
for record in self.training_memory:
if "panic" in record["query"].lower() or "unsafe" in record["response"].lower():
learned_insights.append("Avoid panic triggers in response phrasing.")
logger.info(f"[Codriao Training] Learned {len(learned_insights)} behavioral insights.")
return {
"insights": learned_insights,
"trained_samples": len(self.training_memory)
}
def analyze_event_for_anomalies(self, event_type: str, data: dict):
score = self.anomaly_scorer.score_event(event_type, data)
if score["score"] >= 70:
self.quarantine_engine.quarantine(data.get("module", "unknown"), reason=score["notes"])
logger.warning(f"[Codriao]: Suspicious activity quarantined. Module: {data.get('module')}")
return score
def review_codriao_journal(self, authorized: bool = False) -> List[Dict[str, str]]:
if not authorized:
logger.info("[Codriao Journal] Access attempt denied.")
return [{"message": "Access to journal denied. This log is for Codriao only."}]
entries = []
for encrypted in self._codriao_journal:
try:
decrypted = self._journal_fernet.decrypt(encrypted).decode()
entries.append(json.loads(decrypted))
except Exception:
entries.append({"error": "Unreadable entry"})
return entries
def _log_to_blockchain(self, user_id: int, query: str, final_response: str):
for attempt in range(3):
try:
logger.info(f"Logging interaction to blockchain: Attempt {attempt + 1}")
break
except Exception as e:
logger.warning(f"Blockchain logging failed: {e}")
def _speak_response(self, response: str):
if not self.ethics_core.evaluate_action(f"speak: {response}"):
logger.warning("[Codriao]: Speech output blocked by ethical filter.")
return
try:
self.speech_engine.say(response)
self.speech_engine.runAndWait()
except Exception as e:
logger.error(f"Speech synthesis failed: {e}")
async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]:
try:
result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
logger.info(f"TB Diagnostic Result: {result}")
return result
except Exception as e:
logger.error(f"TB diagnostics failed: {e}")
return {"tb_risk": "ERROR", "error": str(e)}
async def _generate_local_model_response(self, query: str) -> str:
inputs = self.tokenizer(query, return_tensors="pt")
outputs = self.model.generate(**inputs)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
try:
if not isinstance(query, str) or len(query.strip()) == 0:
raise ValueError("Invalid query input.")
result = self.ethical_filter.analyze_query(query)
if result["status"] == "blocked":
return {"error": result["reason"]}
if result["status"] == "flagged":
logger.warning(result["warning"])
if any(phrase in query.lower() for phrase in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]):
return await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)
vectorized_query = self._vectorize_query(query)
self.secure_memory_loader.encrypt_vector(user_id, vectorized_query)
responses = await asyncio.gather(
self._generate_local_model_response(query),
self.multi_agent_system.delegate_task(query),
self.self_improving_ai.evaluate_response(query),
self.neural_symbolic_engine.integrate_reasoning(query)
)
final_response = "\n\n".join(responses)
if not self.ethics_core.evaluate_action(final_response):
logger.warning("[Codriao Ethics] Action blocked: Does not align with internal ethics.")
return {"error": "Response rejected by ethical framework"}
if not self.failsafe_system.verify_response_safety(final_response):
return {"error": "Failsafe triggered due to unsafe response content."}
self.learn_from_interaction(query, final_response, user_feedback="auto-pass")
self.database.log_interaction(user_id, query, final_response)
self._log_to_blockchain(user_id, query, final_response)
self._speak_response(final_response)
return {
"response": final_response,
"real_time_data": self.federated_ai.get_latest_data(),
"context_enhanced": True,
"security_status": "Fully Secure"
}
except Exception as e:
logger.error(f"Response generation failed: {e}")
return {"error": "Processing failed - safety protocols engaged"}
async def shutdown(self):
await self.http_session.close()