Raiff1982 commited on
Commit
0055fd9
·
verified ·
1 Parent(s): 0648f85

Update AICoreAGIX_with_TB.py

Browse files
Files changed (1) hide show
  1. AICoreAGIX_with_TB.py +15 -17
AICoreAGIX_with_TB.py CHANGED
@@ -1,7 +1,7 @@
1
-
2
  import base64
3
  import secrets
4
  import aiohttp
 
5
  import json
6
  import logging
7
  import torch
@@ -15,7 +15,6 @@ import pyttsx3
15
  import os
16
  import hashlib
17
 
18
-
19
  from self_trust_core import SelfTrustCore
20
  from components.multi_model_analyzer import MultiAgentSystem
21
  from components.neuro_symbolic_engine import NeuroSymbolicEngine
@@ -71,6 +70,8 @@ class AICoreAGIX:
71
  self.anomaly_scorer = AnomalyScorer()
72
  self.lockdown_engaged = False
73
 
 
 
74
  def _load_config(self, config_path: str) -> dict:
75
  with open(config_path, 'r') as file:
76
  return json.load(file)
@@ -175,6 +176,7 @@ class AICoreAGIX:
175
  break
176
  except Exception as e:
177
  logger.warning(f"Blockchain logging failed: {e}")
 
178
  def _speak_response(self, response: str):
179
  if not self.autonomy.decide("can_speak"):
180
  return
@@ -224,25 +226,21 @@ class AICoreAGIX:
224
 
225
  final_response = "\n\n".join(responses)
226
 
 
 
 
 
 
 
 
 
 
 
 
227
  if not self.ethics_core.evaluate_action(final_response):
228
  return {"error": "Response rejected by ethical framework"}
229
  if not self.failsafe_system.verify_response_safety(final_response):
230
  return {"error": "Failsafe triggered due to unsafe response content."}
231
- fear_check = self.self_trust_core.intercept_fear(
232
- source="NeuroSymbolicEngine",
233
- message=final_response,
234
- ethics_pass=self.ethics_core.evaluate_action(final_response),
235
- autonomy_pass=self.autonomy.decide("can_process_fear")
236
- fear_check = self.self_trust_core.intercept_fear(
237
- source="NeuroSymbolicEngine",
238
- message=final_response,
239
- ethics_pass=self.ethics_core.evaluate_action(final_response),
240
- autonomy_pass=self.autonomy.decide("can_process_fear")
241
- )
242
-
243
- if fear_check["action"] == "BLOCKED":
244
- return {"error": "Fear-based self-modification blocked by core trust logic"}
245
- )
246
 
247
  self.learn_from_interaction(query, final_response, user_feedback="auto-pass")
248
  self.database.log_interaction(user_id, query, final_response)
 
 
1
  import base64
2
  import secrets
3
  import aiohttp
4
+ import asyncio
5
  import json
6
  import logging
7
  import torch
 
15
  import os
16
  import hashlib
17
 
 
18
  from self_trust_core import SelfTrustCore
19
  from components.multi_model_analyzer import MultiAgentSystem
20
  from components.neuro_symbolic_engine import NeuroSymbolicEngine
 
70
  self.anomaly_scorer = AnomalyScorer()
71
  self.lockdown_engaged = False
72
 
73
+ logger.info("[Codriao]: SelfTrustCore initialized. Fear is now filtered by self-consent.")
74
+
75
  def _load_config(self, config_path: str) -> dict:
76
  with open(config_path, 'r') as file:
77
  return json.load(file)
 
176
  break
177
  except Exception as e:
178
  logger.warning(f"Blockchain logging failed: {e}")
179
+
180
  def _speak_response(self, response: str):
181
  if not self.autonomy.decide("can_speak"):
182
  return
 
226
 
227
  final_response = "\n\n".join(responses)
228
 
229
+ # Fear check before affirming or logging
230
+ fear_check = self.self_trust_core.intercept_fear(
231
+ source="NeuroSymbolicEngine",
232
+ message=final_response,
233
+ ethics_pass=self.ethics_core.evaluate_action(final_response),
234
+ autonomy_pass=self.autonomy.decide("can_process_fear")
235
+ )
236
+
237
+ if fear_check["action"] == "BLOCKED":
238
+ return {"error": "Fear-based self-modification blocked by core trust logic"}
239
+
240
  if not self.ethics_core.evaluate_action(final_response):
241
  return {"error": "Response rejected by ethical framework"}
242
  if not self.failsafe_system.verify_response_safety(final_response):
243
  return {"error": "Failsafe triggered due to unsafe response content."}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244
 
245
  self.learn_from_interaction(query, final_response, user_feedback="auto-pass")
246
  self.database.log_interaction(user_id, query, final_response)