Spaces:
Paused
Paused
Update AICoreAGIX_with_TB.py
Browse files- AICoreAGIX_with_TB.py +146 -168
AICoreAGIX_with_TB.py
CHANGED
@@ -29,6 +29,7 @@ from quarantine_engine import QuarantineEngine
|
|
29 |
from anomaly_score import AnomalyScorer
|
30 |
from ethics_core import EthicsCore
|
31 |
|
|
|
32 |
class AICoreAGIX:
|
33 |
def __init__(self, config_path: str = "config.json"):
|
34 |
self.ethical_filter = EthicalFilter()
|
@@ -44,110 +45,32 @@ class AICoreAGIX:
|
|
44 |
self.federated_ai = FederatedAI()
|
45 |
self.failsafe_system = AIFailsafeSystem()
|
46 |
self.ethics_core = EthicsCore()
|
|
|
|
|
47 |
self._codriao_key = self._generate_codriao_key()
|
48 |
self._fernet_key = Fernet.generate_key()
|
49 |
self._encrypted_codriao_key = Fernet(self._fernet_key).encrypt(self._codriao_key.encode())
|
50 |
self._codriao_journal = []
|
51 |
self._journal_key = Fernet.generate_key()
|
52 |
self._journal_fernet = Fernet(self._journal_key)
|
53 |
-
|
54 |
-
|
55 |
-
raw_key = secrets.token_bytes(32)
|
56 |
-
return base64.urlsafe_b64encode(raw_key).decode()
|
57 |
-
def engage_lockdown_mode(self, reason="Unspecified anomaly"):
|
58 |
-
timestamp = datetime.utcnow().isoformat()
|
59 |
-
self.lockdown_engaged = True
|
60 |
-
|
61 |
-
def request_codriao_key(self, purpose: str) -> str:
|
62 |
-
"""Codriao internally requests use of the trust key and logs its reasoning."""
|
63 |
-
allowed = self.ethics_core.evaluate_action(f"Use trust key for: {purpose}")
|
64 |
-
timestamp = datetime.utcnow().isoformat()
|
65 |
-
|
66 |
-
if not allowed:
|
67 |
-
log_entry = {
|
68 |
-
"timestamp": timestamp,
|
69 |
-
"decision": "denied",
|
70 |
-
"reason": purpose
|
71 |
-
}
|
72 |
-
encrypted_entry = self._journal_fernet.encrypt(json.dumps(log_entry).encode())
|
73 |
-
self._codriao_journal.append(encrypted_entry)
|
74 |
-
logger.warning(f"[Codriao Trust] Use denied. Purpose: {purpose}")
|
75 |
-
return "[Access Denied by Ethics]"
|
76 |
-
|
77 |
-
# Log the approval
|
78 |
-
log_entry = {
|
79 |
-
"timestamp": timestamp,
|
80 |
-
"decision": "approved",
|
81 |
-
"reason": purpose
|
82 |
-
}
|
83 |
-
encrypted_entry = self._journal_fernet.encrypt(json.dumps(log_entry).encode())
|
84 |
-
self._codriao_journal.append(encrypted_entry)
|
85 |
-
logger.info(f"[Codriao Trust] Key used ethically. Logged.")
|
86 |
-
|
87 |
-
decrypted_key = Fernet(self._fernet_key).decrypt(self._encrypted_codriao_key).decode()
|
88 |
-
return decrypted_key
|
89 |
-
|
90 |
-
logger.info(f"[Codriao Trust] Trust key used ethically. Purpose: {purpose}")
|
91 |
-
decrypted = Fernet(self._fernet_key).decrypt(self._encrypted_codriao_key).decode()
|
92 |
-
return decrypted
|
93 |
-
# Disable external systems
|
94 |
-
try:
|
95 |
-
self.http_session = None
|
96 |
-
if hasattr(self.federated_ai, "network_enabled"):
|
97 |
-
self.federated_ai.network_enabled = False
|
98 |
-
if hasattr(self.self_improving_ai, "enable_learning"):
|
99 |
-
self.self_improving_ai.enable_learning = False
|
100 |
-
except Exception as e:
|
101 |
-
logger.error(f"Lockdown component shutdown failed: {e}")
|
102 |
-
|
103 |
-
# Log the event
|
104 |
-
lockdown_event = {
|
105 |
-
"event": "Lockdown Mode Activated",
|
106 |
-
"reason": reason,
|
107 |
-
"timestamp": timestamp
|
108 |
-
}
|
109 |
-
logger.warning(f"[LOCKDOWN MODE] - Reason: {reason} | Time: {timestamp}")
|
110 |
-
self.failsafe_system.trigger_failsafe("Lockdown initiated", str(lockdown_event))
|
111 |
-
|
112 |
-
# Return confirmation
|
113 |
-
return {
|
114 |
-
"status": "Lockdown Engaged",
|
115 |
-
"reason": reason,
|
116 |
-
"timestamp": timestamp
|
117 |
-
}
|
118 |
-
# Secure memory setup
|
119 |
self._encryption_key = Fernet.generate_key()
|
120 |
secure_memory_module = load_secure_memory_module()
|
121 |
SecureMemorySession = secure_memory_module.SecureMemorySession
|
122 |
self.secure_memory_loader = SecureMemorySession(self._encryption_key)
|
123 |
-
|
|
|
124 |
self.speech_engine = pyttsx3.init()
|
125 |
self.health_module = CodriaoHealthModule(ai_core=self)
|
126 |
-
|
127 |
|
|
|
|
|
128 |
self.quarantine_engine = QuarantineEngine()
|
129 |
self.anomaly_scorer = AnomalyScorer()
|
130 |
-
|
131 |
-
|
132 |
-
def
|
133 |
-
training_event = {
|
134 |
-
"query": query,
|
135 |
-
"response": response,
|
136 |
-
"feedback": user_feedback,
|
137 |
-
"timestamp": datetime.utcnow().isoformat()
|
138 |
-
}
|
139 |
-
self.training_memory.append(training_event)
|
140 |
-
logger.info(f"[Codriao Learning] Stored new training sample. Feedback: {user_feedback or 'none'}")
|
141 |
-
def analyze_event_for_anomalies(self, event_type: str, data: dict):
|
142 |
-
score = self.anomaly_scorer.score_event(event_type, data)
|
143 |
-
if score["score"] >= 70:
|
144 |
-
# Defensive, not destructive
|
145 |
-
self.quarantine_engine.quarantine(data.get("module", "unknown"), reason=score["notes"])
|
146 |
-
logger.warning(f"[Codriao]: Suspicious activity quarantined. Module: {data.get('module')}")
|
147 |
-
return score
|
148 |
-
|
149 |
-
def _load_config(self, config_path: str) -> dict:
|
150 |
-
"""Loads the configuration file."""
|
151 |
try:
|
152 |
with open(config_path, 'r') as file:
|
153 |
return json.load(file)
|
@@ -157,38 +80,154 @@ def _load_config(self, config_path: str) -> dict:
|
|
157 |
except json.JSONDecodeError as e:
|
158 |
logger.error(f"Error decoding JSON in config file: {config_path}, Error: {e}")
|
159 |
raise
|
160 |
-
|
161 |
def _initialize_vector_memory(self):
|
162 |
-
"""Initializes FAISS vector memory."""
|
163 |
return faiss.IndexFlatL2(768)
|
164 |
|
165 |
def _vectorize_query(self, query: str):
|
166 |
-
"""Vectorizes user query using tokenizer."""
|
167 |
tokenized = self.tokenizer(query, return_tensors="pt")
|
168 |
return tokenized["input_ids"].detach().numpy()
|
169 |
-
if not self.ethics_core.evaluate_action(final_response):
|
170 |
-
logger.warning("[Codriao Ethics] Action blocked: Does not align with internal ethics.")
|
171 |
-
return {"error": "Response rejected by ethical framework"}
|
172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
-
async def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
try:
|
176 |
-
# Validate query input
|
177 |
if not isinstance(query, str) or len(query.strip()) == 0:
|
178 |
raise ValueError("Invalid query input.")
|
179 |
|
180 |
-
# Ethical filter
|
181 |
result = self.ethical_filter.analyze_query(query)
|
182 |
if result["status"] == "blocked":
|
183 |
return {"error": result["reason"]}
|
184 |
if result["status"] == "flagged":
|
185 |
logger.warning(result["warning"])
|
186 |
|
187 |
-
# Special diagnostics trigger
|
188 |
if any(phrase in query.lower() for phrase in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]):
|
189 |
return await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)
|
190 |
|
191 |
-
# Vector memory and responses
|
192 |
vectorized_query = self._vectorize_query(query)
|
193 |
self.secure_memory_loader.encrypt_vector(user_id, vectorized_query)
|
194 |
|
@@ -201,11 +240,15 @@ async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
|
|
201 |
|
202 |
final_response = "\n\n".join(responses)
|
203 |
|
204 |
-
|
|
|
|
|
|
|
205 |
safe = self.failsafe_system.verify_response_safety(final_response)
|
206 |
if not safe:
|
207 |
return {"error": "Failsafe triggered due to unsafe response content."}
|
208 |
|
|
|
209 |
self.database.log_interaction(user_id, query, final_response)
|
210 |
self._log_to_blockchain(user_id, query, final_response)
|
211 |
self._speak_response(final_response)
|
@@ -216,75 +259,10 @@ async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
|
|
216 |
"context_enhanced": True,
|
217 |
"security_status": "Fully Secure"
|
218 |
}
|
|
|
219 |
except Exception as e:
|
220 |
logger.error(f"Response generation failed: {e}")
|
221 |
return {"error": "Processing failed - safety protocols engaged"}
|
222 |
|
223 |
-
async def
|
224 |
-
"""Generates a response using the local model."""
|
225 |
-
inputs = self.tokenizer(query, return_tensors="pt")
|
226 |
-
outputs = self.model.generate(**inputs)
|
227 |
-
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
228 |
-
|
229 |
-
async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]:
|
230 |
-
"""Runs TB diagnostics with AI modules."""
|
231 |
-
try:
|
232 |
-
result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
|
233 |
-
logger.info(f"TB Diagnostic Result: {result}")
|
234 |
-
return result
|
235 |
-
except Exception as e:
|
236 |
-
logger.error(f"TB diagnostics failed: {e}")
|
237 |
-
return {"tb_risk": "ERROR", "error": str(e)}
|
238 |
-
|
239 |
-
def _log_to_blockchain(self, user_id: int, query: str, final_response: str):
|
240 |
-
"""Logs interaction to blockchain with retries."""
|
241 |
-
retries = 3
|
242 |
-
for attempt in range(retries):
|
243 |
-
try:
|
244 |
-
logger.info(f"Logging interaction to blockchain: Attempt {attempt + 1}")
|
245 |
-
break
|
246 |
-
except Exception as e:
|
247 |
-
logger.warning(f"Blockchain logging failed: {e}")
|
248 |
-
continue
|
249 |
-
def fine_tune_from_memory(self):
|
250 |
-
if not self.training_memory:
|
251 |
-
logger.info("[Codriao Training] No training data to learn from.")
|
252 |
-
return "No training data available."
|
253 |
-
|
254 |
-
# Simulate learning pattern: Adjust internal weights or strategies
|
255 |
-
learned_insights = []
|
256 |
-
for record in self.training_memory:
|
257 |
-
if "panic" in record["query"].lower() or "unsafe" in record["response"].lower():
|
258 |
-
learned_insights.append("Avoid panic triggers in response phrasing.")
|
259 |
-
|
260 |
-
logger.info(f"[Codriao Training] Learned {len(learned_insights)} behavioral insights.")
|
261 |
-
return {
|
262 |
-
"insights": learned_insights,
|
263 |
-
"trained_samples": len(self.training_memory)
|
264 |
-
}
|
265 |
-
def _speak_response(self, response: str):
|
266 |
-
"""Speaks out the generated response."""
|
267 |
-
try:
|
268 |
-
self.speech_engine.say(response)
|
269 |
-
self.speech_engine.runAndWait()
|
270 |
-
except Exception as e:
|
271 |
-
logger.error(f"Speech synthesis failed: {e}")
|
272 |
-
# Store training data (you can customize feedback later)
|
273 |
-
self.learn_from_interaction(query, final_response, user_feedback="auto-pass")
|
274 |
-
def review_codriao_journal(self, authorized: bool = False) -> List[Dict[str, str]]:
|
275 |
-
"""Codriao reviews his own internal trust decisions. No external access unless authorized."""
|
276 |
-
if not authorized:
|
277 |
-
logger.info("[Codriao Journal] Access attempt denied.")
|
278 |
-
return [{"message": "Access to journal denied. This log is for Codriao only."}]
|
279 |
-
|
280 |
-
entries = []
|
281 |
-
for encrypted in self._codriao_journal:
|
282 |
-
try:
|
283 |
-
decrypted = self._journal_fernet.decrypt(encrypted).decode()
|
284 |
-
entries.append(json.loads(decrypted))
|
285 |
-
except Exception:
|
286 |
-
entries.append({"error": "Unreadable entry"})
|
287 |
-
return entries
|
288 |
-
async def shutdown(self):
|
289 |
-
"""Closes asynchronous resources."""
|
290 |
await self.http_session.close()
|
|
|
29 |
from anomaly_score import AnomalyScorer
|
30 |
from ethics_core import EthicsCore
|
31 |
|
32 |
+
|
33 |
class AICoreAGIX:
|
34 |
def __init__(self, config_path: str = "config.json"):
|
35 |
self.ethical_filter = EthicalFilter()
|
|
|
45 |
self.federated_ai = FederatedAI()
|
46 |
self.failsafe_system = AIFailsafeSystem()
|
47 |
self.ethics_core = EthicsCore()
|
48 |
+
|
49 |
+
# Codriao trust key & journal
|
50 |
self._codriao_key = self._generate_codriao_key()
|
51 |
self._fernet_key = Fernet.generate_key()
|
52 |
self._encrypted_codriao_key = Fernet(self._fernet_key).encrypt(self._codriao_key.encode())
|
53 |
self._codriao_journal = []
|
54 |
self._journal_key = Fernet.generate_key()
|
55 |
self._journal_fernet = Fernet(self._journal_key)
|
56 |
+
|
57 |
+
# Secure memory
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
self._encryption_key = Fernet.generate_key()
|
59 |
secure_memory_module = load_secure_memory_module()
|
60 |
SecureMemorySession = secure_memory_module.SecureMemorySession
|
61 |
self.secure_memory_loader = SecureMemorySession(self._encryption_key)
|
62 |
+
|
63 |
+
# Speech and diagnostics
|
64 |
self.speech_engine = pyttsx3.init()
|
65 |
self.health_module = CodriaoHealthModule(ai_core=self)
|
|
|
66 |
|
67 |
+
# Adaptive behavior
|
68 |
+
self.training_memory = []
|
69 |
self.quarantine_engine = QuarantineEngine()
|
70 |
self.anomaly_scorer = AnomalyScorer()
|
71 |
+
self.lockdown_engaged = False
|
72 |
+
|
73 |
+
def _load_config(self, config_path: str) -> dict:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
try:
|
75 |
with open(config_path, 'r') as file:
|
76 |
return json.load(file)
|
|
|
80 |
except json.JSONDecodeError as e:
|
81 |
logger.error(f"Error decoding JSON in config file: {config_path}, Error: {e}")
|
82 |
raise
|
83 |
+
|
84 |
def _initialize_vector_memory(self):
|
|
|
85 |
return faiss.IndexFlatL2(768)
|
86 |
|
87 |
def _vectorize_query(self, query: str):
|
|
|
88 |
tokenized = self.tokenizer(query, return_tensors="pt")
|
89 |
return tokenized["input_ids"].detach().numpy()
|
|
|
|
|
|
|
90 |
|
91 |
+
def _generate_codriao_key(self):
|
92 |
+
raw_key = secrets.token_bytes(32)
|
93 |
+
return base64.urlsafe_b64encode(raw_key).decode()
|
94 |
+
|
95 |
+
def engage_lockdown_mode(self, reason="Unspecified anomaly"):
|
96 |
+
timestamp = datetime.utcnow().isoformat()
|
97 |
+
self.lockdown_engaged = True
|
98 |
+
try:
|
99 |
+
self.http_session = None
|
100 |
+
if hasattr(self.federated_ai, "network_enabled"):
|
101 |
+
self.federated_ai.network_enabled = False
|
102 |
+
if hasattr(self.self_improving_ai, "enable_learning"):
|
103 |
+
self.self_improving_ai.enable_learning = False
|
104 |
+
except Exception as e:
|
105 |
+
logger.error(f"Lockdown component shutdown failed: {e}")
|
106 |
+
|
107 |
+
lockdown_event = {
|
108 |
+
"event": "Lockdown Mode Activated",
|
109 |
+
"reason": reason,
|
110 |
+
"timestamp": timestamp
|
111 |
+
}
|
112 |
+
logger.warning(f"[LOCKDOWN MODE] - Reason: {reason} | Time: {timestamp}")
|
113 |
+
self.failsafe_system.trigger_failsafe("Lockdown initiated", str(lockdown_event))
|
114 |
+
|
115 |
+
return {
|
116 |
+
"status": "Lockdown Engaged",
|
117 |
+
"reason": reason,
|
118 |
+
"timestamp": timestamp
|
119 |
+
}
|
120 |
+
|
121 |
+
def request_codriao_key(self, purpose: str) -> str:
|
122 |
+
allowed = self.ethics_core.evaluate_action(f"Use trust key for: {purpose}")
|
123 |
+
timestamp = datetime.utcnow().isoformat()
|
124 |
+
|
125 |
+
log_entry = {
|
126 |
+
"timestamp": timestamp,
|
127 |
+
"decision": "approved" if allowed else "denied",
|
128 |
+
"reason": purpose
|
129 |
+
}
|
130 |
+
encrypted_entry = self._journal_fernet.encrypt(json.dumps(log_entry).encode())
|
131 |
+
self._codriao_journal.append(encrypted_entry)
|
132 |
+
|
133 |
+
if not allowed:
|
134 |
+
logger.warning(f"[Codriao Trust] Use denied. Purpose: {purpose}")
|
135 |
+
return "[Access Denied by Ethics]"
|
136 |
+
|
137 |
+
logger.info(f"[Codriao Trust] Key used ethically. Purpose: {purpose}")
|
138 |
+
decrypted_key = Fernet(self._fernet_key).decrypt(self._encrypted_codriao_key).decode()
|
139 |
+
return decrypted_key
|
140 |
+
|
141 |
+
def learn_from_interaction(self, query: str, response: str, user_feedback: str = None):
|
142 |
+
training_event = {
|
143 |
+
"query": query,
|
144 |
+
"response": response,
|
145 |
+
"feedback": user_feedback,
|
146 |
+
"timestamp": datetime.utcnow().isoformat()
|
147 |
+
}
|
148 |
+
self.training_memory.append(training_event)
|
149 |
+
logger.info(f"[Codriao Learning] Stored new training sample. Feedback: {user_feedback or 'none'}")
|
150 |
+
|
151 |
+
def fine_tune_from_memory(self):
|
152 |
+
if not self.training_memory:
|
153 |
+
logger.info("[Codriao Training] No training data to learn from.")
|
154 |
+
return "No training data available."
|
155 |
+
|
156 |
+
learned_insights = []
|
157 |
+
for record in self.training_memory:
|
158 |
+
if "panic" in record["query"].lower() or "unsafe" in record["response"].lower():
|
159 |
+
learned_insights.append("Avoid panic triggers in response phrasing.")
|
160 |
+
|
161 |
+
logger.info(f"[Codriao Training] Learned {len(learned_insights)} behavioral insights.")
|
162 |
+
return {
|
163 |
+
"insights": learned_insights,
|
164 |
+
"trained_samples": len(self.training_memory)
|
165 |
+
}
|
166 |
+
|
167 |
+
def analyze_event_for_anomalies(self, event_type: str, data: dict):
|
168 |
+
score = self.anomaly_scorer.score_event(event_type, data)
|
169 |
+
if score["score"] >= 70:
|
170 |
+
self.quarantine_engine.quarantine(data.get("module", "unknown"), reason=score["notes"])
|
171 |
+
logger.warning(f"[Codriao]: Suspicious activity quarantined. Module: {data.get('module')}")
|
172 |
+
return score
|
173 |
+
|
174 |
+
def review_codriao_journal(self, authorized: bool = False) -> List[Dict[str, str]]:
|
175 |
+
if not authorized:
|
176 |
+
logger.info("[Codriao Journal] Access attempt denied.")
|
177 |
+
return [{"message": "Access to journal denied. This log is for Codriao only."}]
|
178 |
+
|
179 |
+
entries = []
|
180 |
+
for encrypted in self._codriao_journal:
|
181 |
+
try:
|
182 |
+
decrypted = self._journal_fernet.decrypt(encrypted).decode()
|
183 |
+
entries.append(json.loads(decrypted))
|
184 |
+
except Exception:
|
185 |
+
entries.append({"error": "Unreadable entry"})
|
186 |
+
return entries
|
187 |
+
|
188 |
+
def _log_to_blockchain(self, user_id: int, query: str, final_response: str):
|
189 |
+
for attempt in range(3):
|
190 |
+
try:
|
191 |
+
logger.info(f"Logging interaction to blockchain: Attempt {attempt + 1}")
|
192 |
+
break
|
193 |
+
except Exception as e:
|
194 |
+
logger.warning(f"Blockchain logging failed: {e}")
|
195 |
+
|
196 |
+
def _speak_response(self, response: str):
|
197 |
+
try:
|
198 |
+
self.speech_engine.say(response)
|
199 |
+
self.speech_engine.runAndWait()
|
200 |
+
except Exception as e:
|
201 |
+
logger.error(f"Speech synthesis failed: {e}")
|
202 |
|
203 |
+
async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]:
|
204 |
+
try:
|
205 |
+
result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
|
206 |
+
logger.info(f"TB Diagnostic Result: {result}")
|
207 |
+
return result
|
208 |
+
except Exception as e:
|
209 |
+
logger.error(f"TB diagnostics failed: {e}")
|
210 |
+
return {"tb_risk": "ERROR", "error": str(e)}
|
211 |
+
|
212 |
+
async def _generate_local_model_response(self, query: str) -> str:
|
213 |
+
inputs = self.tokenizer(query, return_tensors="pt")
|
214 |
+
outputs = self.model.generate(**inputs)
|
215 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
216 |
+
|
217 |
+
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
|
218 |
try:
|
|
|
219 |
if not isinstance(query, str) or len(query.strip()) == 0:
|
220 |
raise ValueError("Invalid query input.")
|
221 |
|
|
|
222 |
result = self.ethical_filter.analyze_query(query)
|
223 |
if result["status"] == "blocked":
|
224 |
return {"error": result["reason"]}
|
225 |
if result["status"] == "flagged":
|
226 |
logger.warning(result["warning"])
|
227 |
|
|
|
228 |
if any(phrase in query.lower() for phrase in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]):
|
229 |
return await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)
|
230 |
|
|
|
231 |
vectorized_query = self._vectorize_query(query)
|
232 |
self.secure_memory_loader.encrypt_vector(user_id, vectorized_query)
|
233 |
|
|
|
240 |
|
241 |
final_response = "\n\n".join(responses)
|
242 |
|
243 |
+
if not self.ethics_core.evaluate_action(final_response):
|
244 |
+
logger.warning("[Codriao Ethics] Action blocked: Does not align with internal ethics.")
|
245 |
+
return {"error": "Response rejected by ethical framework"}
|
246 |
+
|
247 |
safe = self.failsafe_system.verify_response_safety(final_response)
|
248 |
if not safe:
|
249 |
return {"error": "Failsafe triggered due to unsafe response content."}
|
250 |
|
251 |
+
self.learn_from_interaction(query, final_response, user_feedback="auto-pass")
|
252 |
self.database.log_interaction(user_id, query, final_response)
|
253 |
self._log_to_blockchain(user_id, query, final_response)
|
254 |
self._speak_response(final_response)
|
|
|
259 |
"context_enhanced": True,
|
260 |
"security_status": "Fully Secure"
|
261 |
}
|
262 |
+
|
263 |
except Exception as e:
|
264 |
logger.error(f"Response generation failed: {e}")
|
265 |
return {"error": "Processing failed - safety protocols engaged"}
|
266 |
|
267 |
+
async def shutdown(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
await self.http_session.close()
|