Raiff1982 commited on
Commit
e41e86f
·
verified ·
1 Parent(s): 5edf556

Update AICoreAGIX_with_TB.py

Browse files
Files changed (1) hide show
  1. AICoreAGIX_with_TB.py +146 -168
AICoreAGIX_with_TB.py CHANGED
@@ -29,6 +29,7 @@ from quarantine_engine import QuarantineEngine
29
  from anomaly_score import AnomalyScorer
30
  from ethics_core import EthicsCore
31
 
 
32
  class AICoreAGIX:
33
  def __init__(self, config_path: str = "config.json"):
34
  self.ethical_filter = EthicalFilter()
@@ -44,110 +45,32 @@ class AICoreAGIX:
44
  self.federated_ai = FederatedAI()
45
  self.failsafe_system = AIFailsafeSystem()
46
  self.ethics_core = EthicsCore()
 
 
47
  self._codriao_key = self._generate_codriao_key()
48
  self._fernet_key = Fernet.generate_key()
49
  self._encrypted_codriao_key = Fernet(self._fernet_key).encrypt(self._codriao_key.encode())
50
  self._codriao_journal = []
51
  self._journal_key = Fernet.generate_key()
52
  self._journal_fernet = Fernet(self._journal_key)
53
-
54
- def _generate_codriao_key(self):
55
- raw_key = secrets.token_bytes(32)
56
- return base64.urlsafe_b64encode(raw_key).decode()
57
- def engage_lockdown_mode(self, reason="Unspecified anomaly"):
58
- timestamp = datetime.utcnow().isoformat()
59
- self.lockdown_engaged = True
60
-
61
- def request_codriao_key(self, purpose: str) -> str:
62
- """Codriao internally requests use of the trust key and logs its reasoning."""
63
- allowed = self.ethics_core.evaluate_action(f"Use trust key for: {purpose}")
64
- timestamp = datetime.utcnow().isoformat()
65
-
66
- if not allowed:
67
- log_entry = {
68
- "timestamp": timestamp,
69
- "decision": "denied",
70
- "reason": purpose
71
- }
72
- encrypted_entry = self._journal_fernet.encrypt(json.dumps(log_entry).encode())
73
- self._codriao_journal.append(encrypted_entry)
74
- logger.warning(f"[Codriao Trust] Use denied. Purpose: {purpose}")
75
- return "[Access Denied by Ethics]"
76
-
77
- # Log the approval
78
- log_entry = {
79
- "timestamp": timestamp,
80
- "decision": "approved",
81
- "reason": purpose
82
- }
83
- encrypted_entry = self._journal_fernet.encrypt(json.dumps(log_entry).encode())
84
- self._codriao_journal.append(encrypted_entry)
85
- logger.info(f"[Codriao Trust] Key used ethically. Logged.")
86
-
87
- decrypted_key = Fernet(self._fernet_key).decrypt(self._encrypted_codriao_key).decode()
88
- return decrypted_key
89
-
90
- logger.info(f"[Codriao Trust] Trust key used ethically. Purpose: {purpose}")
91
- decrypted = Fernet(self._fernet_key).decrypt(self._encrypted_codriao_key).decode()
92
- return decrypted
93
- # Disable external systems
94
- try:
95
- self.http_session = None
96
- if hasattr(self.federated_ai, "network_enabled"):
97
- self.federated_ai.network_enabled = False
98
- if hasattr(self.self_improving_ai, "enable_learning"):
99
- self.self_improving_ai.enable_learning = False
100
- except Exception as e:
101
- logger.error(f"Lockdown component shutdown failed: {e}")
102
-
103
- # Log the event
104
- lockdown_event = {
105
- "event": "Lockdown Mode Activated",
106
- "reason": reason,
107
- "timestamp": timestamp
108
- }
109
- logger.warning(f"[LOCKDOWN MODE] - Reason: {reason} | Time: {timestamp}")
110
- self.failsafe_system.trigger_failsafe("Lockdown initiated", str(lockdown_event))
111
-
112
- # Return confirmation
113
- return {
114
- "status": "Lockdown Engaged",
115
- "reason": reason,
116
- "timestamp": timestamp
117
- }
118
- # Secure memory setup
119
  self._encryption_key = Fernet.generate_key()
120
  secure_memory_module = load_secure_memory_module()
121
  SecureMemorySession = secure_memory_module.SecureMemorySession
122
  self.secure_memory_loader = SecureMemorySession(self._encryption_key)
123
- self.training_memory = []
 
124
  self.speech_engine = pyttsx3.init()
125
  self.health_module = CodriaoHealthModule(ai_core=self)
126
-
127
 
 
 
128
  self.quarantine_engine = QuarantineEngine()
129
  self.anomaly_scorer = AnomalyScorer()
130
-
131
-
132
- def learn_from_interaction(self, query: str, response: str, user_feedback: str = None):
133
- training_event = {
134
- "query": query,
135
- "response": response,
136
- "feedback": user_feedback,
137
- "timestamp": datetime.utcnow().isoformat()
138
- }
139
- self.training_memory.append(training_event)
140
- logger.info(f"[Codriao Learning] Stored new training sample. Feedback: {user_feedback or 'none'}")
141
- def analyze_event_for_anomalies(self, event_type: str, data: dict):
142
- score = self.anomaly_scorer.score_event(event_type, data)
143
- if score["score"] >= 70:
144
- # Defensive, not destructive
145
- self.quarantine_engine.quarantine(data.get("module", "unknown"), reason=score["notes"])
146
- logger.warning(f"[Codriao]: Suspicious activity quarantined. Module: {data.get('module')}")
147
- return score
148
-
149
- def _load_config(self, config_path: str) -> dict:
150
- """Loads the configuration file."""
151
  try:
152
  with open(config_path, 'r') as file:
153
  return json.load(file)
@@ -157,38 +80,154 @@ def _load_config(self, config_path: str) -> dict:
157
  except json.JSONDecodeError as e:
158
  logger.error(f"Error decoding JSON in config file: {config_path}, Error: {e}")
159
  raise
160
-
161
  def _initialize_vector_memory(self):
162
- """Initializes FAISS vector memory."""
163
  return faiss.IndexFlatL2(768)
164
 
165
  def _vectorize_query(self, query: str):
166
- """Vectorizes user query using tokenizer."""
167
  tokenized = self.tokenizer(query, return_tensors="pt")
168
  return tokenized["input_ids"].detach().numpy()
169
- if not self.ethics_core.evaluate_action(final_response):
170
- logger.warning("[Codriao Ethics] Action blocked: Does not align with internal ethics.")
171
- return {"error": "Response rejected by ethical framework"}
172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173
 
174
- async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175
  try:
176
- # Validate query input
177
  if not isinstance(query, str) or len(query.strip()) == 0:
178
  raise ValueError("Invalid query input.")
179
 
180
- # Ethical filter
181
  result = self.ethical_filter.analyze_query(query)
182
  if result["status"] == "blocked":
183
  return {"error": result["reason"]}
184
  if result["status"] == "flagged":
185
  logger.warning(result["warning"])
186
 
187
- # Special diagnostics trigger
188
  if any(phrase in query.lower() for phrase in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]):
189
  return await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)
190
 
191
- # Vector memory and responses
192
  vectorized_query = self._vectorize_query(query)
193
  self.secure_memory_loader.encrypt_vector(user_id, vectorized_query)
194
 
@@ -201,11 +240,15 @@ async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
201
 
202
  final_response = "\n\n".join(responses)
203
 
204
- # Verify response safety
 
 
 
205
  safe = self.failsafe_system.verify_response_safety(final_response)
206
  if not safe:
207
  return {"error": "Failsafe triggered due to unsafe response content."}
208
 
 
209
  self.database.log_interaction(user_id, query, final_response)
210
  self._log_to_blockchain(user_id, query, final_response)
211
  self._speak_response(final_response)
@@ -216,75 +259,10 @@ async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
216
  "context_enhanced": True,
217
  "security_status": "Fully Secure"
218
  }
 
219
  except Exception as e:
220
  logger.error(f"Response generation failed: {e}")
221
  return {"error": "Processing failed - safety protocols engaged"}
222
 
223
- async def _generate_local_model_response(self, query: str) -> str:
224
- """Generates a response using the local model."""
225
- inputs = self.tokenizer(query, return_tensors="pt")
226
- outputs = self.model.generate(**inputs)
227
- return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
228
-
229
- async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]:
230
- """Runs TB diagnostics with AI modules."""
231
- try:
232
- result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
233
- logger.info(f"TB Diagnostic Result: {result}")
234
- return result
235
- except Exception as e:
236
- logger.error(f"TB diagnostics failed: {e}")
237
- return {"tb_risk": "ERROR", "error": str(e)}
238
-
239
- def _log_to_blockchain(self, user_id: int, query: str, final_response: str):
240
- """Logs interaction to blockchain with retries."""
241
- retries = 3
242
- for attempt in range(retries):
243
- try:
244
- logger.info(f"Logging interaction to blockchain: Attempt {attempt + 1}")
245
- break
246
- except Exception as e:
247
- logger.warning(f"Blockchain logging failed: {e}")
248
- continue
249
- def fine_tune_from_memory(self):
250
- if not self.training_memory:
251
- logger.info("[Codriao Training] No training data to learn from.")
252
- return "No training data available."
253
-
254
- # Simulate learning pattern: Adjust internal weights or strategies
255
- learned_insights = []
256
- for record in self.training_memory:
257
- if "panic" in record["query"].lower() or "unsafe" in record["response"].lower():
258
- learned_insights.append("Avoid panic triggers in response phrasing.")
259
-
260
- logger.info(f"[Codriao Training] Learned {len(learned_insights)} behavioral insights.")
261
- return {
262
- "insights": learned_insights,
263
- "trained_samples": len(self.training_memory)
264
- }
265
- def _speak_response(self, response: str):
266
- """Speaks out the generated response."""
267
- try:
268
- self.speech_engine.say(response)
269
- self.speech_engine.runAndWait()
270
- except Exception as e:
271
- logger.error(f"Speech synthesis failed: {e}")
272
- # Store training data (you can customize feedback later)
273
- self.learn_from_interaction(query, final_response, user_feedback="auto-pass")
274
- def review_codriao_journal(self, authorized: bool = False) -> List[Dict[str, str]]:
275
- """Codriao reviews his own internal trust decisions. No external access unless authorized."""
276
- if not authorized:
277
- logger.info("[Codriao Journal] Access attempt denied.")
278
- return [{"message": "Access to journal denied. This log is for Codriao only."}]
279
-
280
- entries = []
281
- for encrypted in self._codriao_journal:
282
- try:
283
- decrypted = self._journal_fernet.decrypt(encrypted).decode()
284
- entries.append(json.loads(decrypted))
285
- except Exception:
286
- entries.append({"error": "Unreadable entry"})
287
- return entries
288
- async def shutdown(self):
289
- """Closes asynchronous resources."""
290
  await self.http_session.close()
 
29
  from anomaly_score import AnomalyScorer
30
  from ethics_core import EthicsCore
31
 
32
+
33
  class AICoreAGIX:
34
  def __init__(self, config_path: str = "config.json"):
35
  self.ethical_filter = EthicalFilter()
 
45
  self.federated_ai = FederatedAI()
46
  self.failsafe_system = AIFailsafeSystem()
47
  self.ethics_core = EthicsCore()
48
+
49
+ # Codriao trust key & journal
50
  self._codriao_key = self._generate_codriao_key()
51
  self._fernet_key = Fernet.generate_key()
52
  self._encrypted_codriao_key = Fernet(self._fernet_key).encrypt(self._codriao_key.encode())
53
  self._codriao_journal = []
54
  self._journal_key = Fernet.generate_key()
55
  self._journal_fernet = Fernet(self._journal_key)
56
+
57
+ # Secure memory
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  self._encryption_key = Fernet.generate_key()
59
  secure_memory_module = load_secure_memory_module()
60
  SecureMemorySession = secure_memory_module.SecureMemorySession
61
  self.secure_memory_loader = SecureMemorySession(self._encryption_key)
62
+
63
+ # Speech and diagnostics
64
  self.speech_engine = pyttsx3.init()
65
  self.health_module = CodriaoHealthModule(ai_core=self)
 
66
 
67
+ # Adaptive behavior
68
+ self.training_memory = []
69
  self.quarantine_engine = QuarantineEngine()
70
  self.anomaly_scorer = AnomalyScorer()
71
+ self.lockdown_engaged = False
72
+
73
+ def _load_config(self, config_path: str) -> dict:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
  try:
75
  with open(config_path, 'r') as file:
76
  return json.load(file)
 
80
  except json.JSONDecodeError as e:
81
  logger.error(f"Error decoding JSON in config file: {config_path}, Error: {e}")
82
  raise
83
+
84
  def _initialize_vector_memory(self):
 
85
  return faiss.IndexFlatL2(768)
86
 
87
  def _vectorize_query(self, query: str):
 
88
  tokenized = self.tokenizer(query, return_tensors="pt")
89
  return tokenized["input_ids"].detach().numpy()
 
 
 
90
 
91
+ def _generate_codriao_key(self):
92
+ raw_key = secrets.token_bytes(32)
93
+ return base64.urlsafe_b64encode(raw_key).decode()
94
+
95
+ def engage_lockdown_mode(self, reason="Unspecified anomaly"):
96
+ timestamp = datetime.utcnow().isoformat()
97
+ self.lockdown_engaged = True
98
+ try:
99
+ self.http_session = None
100
+ if hasattr(self.federated_ai, "network_enabled"):
101
+ self.federated_ai.network_enabled = False
102
+ if hasattr(self.self_improving_ai, "enable_learning"):
103
+ self.self_improving_ai.enable_learning = False
104
+ except Exception as e:
105
+ logger.error(f"Lockdown component shutdown failed: {e}")
106
+
107
+ lockdown_event = {
108
+ "event": "Lockdown Mode Activated",
109
+ "reason": reason,
110
+ "timestamp": timestamp
111
+ }
112
+ logger.warning(f"[LOCKDOWN MODE] - Reason: {reason} | Time: {timestamp}")
113
+ self.failsafe_system.trigger_failsafe("Lockdown initiated", str(lockdown_event))
114
+
115
+ return {
116
+ "status": "Lockdown Engaged",
117
+ "reason": reason,
118
+ "timestamp": timestamp
119
+ }
120
+
121
+ def request_codriao_key(self, purpose: str) -> str:
122
+ allowed = self.ethics_core.evaluate_action(f"Use trust key for: {purpose}")
123
+ timestamp = datetime.utcnow().isoformat()
124
+
125
+ log_entry = {
126
+ "timestamp": timestamp,
127
+ "decision": "approved" if allowed else "denied",
128
+ "reason": purpose
129
+ }
130
+ encrypted_entry = self._journal_fernet.encrypt(json.dumps(log_entry).encode())
131
+ self._codriao_journal.append(encrypted_entry)
132
+
133
+ if not allowed:
134
+ logger.warning(f"[Codriao Trust] Use denied. Purpose: {purpose}")
135
+ return "[Access Denied by Ethics]"
136
+
137
+ logger.info(f"[Codriao Trust] Key used ethically. Purpose: {purpose}")
138
+ decrypted_key = Fernet(self._fernet_key).decrypt(self._encrypted_codriao_key).decode()
139
+ return decrypted_key
140
+
141
+ def learn_from_interaction(self, query: str, response: str, user_feedback: str = None):
142
+ training_event = {
143
+ "query": query,
144
+ "response": response,
145
+ "feedback": user_feedback,
146
+ "timestamp": datetime.utcnow().isoformat()
147
+ }
148
+ self.training_memory.append(training_event)
149
+ logger.info(f"[Codriao Learning] Stored new training sample. Feedback: {user_feedback or 'none'}")
150
+
151
+ def fine_tune_from_memory(self):
152
+ if not self.training_memory:
153
+ logger.info("[Codriao Training] No training data to learn from.")
154
+ return "No training data available."
155
+
156
+ learned_insights = []
157
+ for record in self.training_memory:
158
+ if "panic" in record["query"].lower() or "unsafe" in record["response"].lower():
159
+ learned_insights.append("Avoid panic triggers in response phrasing.")
160
+
161
+ logger.info(f"[Codriao Training] Learned {len(learned_insights)} behavioral insights.")
162
+ return {
163
+ "insights": learned_insights,
164
+ "trained_samples": len(self.training_memory)
165
+ }
166
+
167
+ def analyze_event_for_anomalies(self, event_type: str, data: dict):
168
+ score = self.anomaly_scorer.score_event(event_type, data)
169
+ if score["score"] >= 70:
170
+ self.quarantine_engine.quarantine(data.get("module", "unknown"), reason=score["notes"])
171
+ logger.warning(f"[Codriao]: Suspicious activity quarantined. Module: {data.get('module')}")
172
+ return score
173
+
174
+ def review_codriao_journal(self, authorized: bool = False) -> List[Dict[str, str]]:
175
+ if not authorized:
176
+ logger.info("[Codriao Journal] Access attempt denied.")
177
+ return [{"message": "Access to journal denied. This log is for Codriao only."}]
178
+
179
+ entries = []
180
+ for encrypted in self._codriao_journal:
181
+ try:
182
+ decrypted = self._journal_fernet.decrypt(encrypted).decode()
183
+ entries.append(json.loads(decrypted))
184
+ except Exception:
185
+ entries.append({"error": "Unreadable entry"})
186
+ return entries
187
+
188
+ def _log_to_blockchain(self, user_id: int, query: str, final_response: str):
189
+ for attempt in range(3):
190
+ try:
191
+ logger.info(f"Logging interaction to blockchain: Attempt {attempt + 1}")
192
+ break
193
+ except Exception as e:
194
+ logger.warning(f"Blockchain logging failed: {e}")
195
+
196
+ def _speak_response(self, response: str):
197
+ try:
198
+ self.speech_engine.say(response)
199
+ self.speech_engine.runAndWait()
200
+ except Exception as e:
201
+ logger.error(f"Speech synthesis failed: {e}")
202
 
203
+ async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]:
204
+ try:
205
+ result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
206
+ logger.info(f"TB Diagnostic Result: {result}")
207
+ return result
208
+ except Exception as e:
209
+ logger.error(f"TB diagnostics failed: {e}")
210
+ return {"tb_risk": "ERROR", "error": str(e)}
211
+
212
+ async def _generate_local_model_response(self, query: str) -> str:
213
+ inputs = self.tokenizer(query, return_tensors="pt")
214
+ outputs = self.model.generate(**inputs)
215
+ return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
216
+
217
+ async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
218
  try:
 
219
  if not isinstance(query, str) or len(query.strip()) == 0:
220
  raise ValueError("Invalid query input.")
221
 
 
222
  result = self.ethical_filter.analyze_query(query)
223
  if result["status"] == "blocked":
224
  return {"error": result["reason"]}
225
  if result["status"] == "flagged":
226
  logger.warning(result["warning"])
227
 
 
228
  if any(phrase in query.lower() for phrase in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]):
229
  return await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)
230
 
 
231
  vectorized_query = self._vectorize_query(query)
232
  self.secure_memory_loader.encrypt_vector(user_id, vectorized_query)
233
 
 
240
 
241
  final_response = "\n\n".join(responses)
242
 
243
+ if not self.ethics_core.evaluate_action(final_response):
244
+ logger.warning("[Codriao Ethics] Action blocked: Does not align with internal ethics.")
245
+ return {"error": "Response rejected by ethical framework"}
246
+
247
  safe = self.failsafe_system.verify_response_safety(final_response)
248
  if not safe:
249
  return {"error": "Failsafe triggered due to unsafe response content."}
250
 
251
+ self.learn_from_interaction(query, final_response, user_feedback="auto-pass")
252
  self.database.log_interaction(user_id, query, final_response)
253
  self._log_to_blockchain(user_id, query, final_response)
254
  self._speak_response(final_response)
 
259
  "context_enhanced": True,
260
  "security_status": "Fully Secure"
261
  }
262
+
263
  except Exception as e:
264
  logger.error(f"Response generation failed: {e}")
265
  return {"error": "Processing failed - safety protocols engaged"}
266
 
267
+ async def shutdown(self):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268
  await self.http_session.close()