import aiohttp import json import logging import torch import faiss import numpy as np from transformers import AutoModelForCausalLM, AutoTokenizer from typing import List, Dict, Any from cryptography.fernet import Fernet from jwt import encode, decode, ExpiredSignatureError from datetime import datetime, timedelta import speech_recognition as sr import pyttsx3 import os # === Corrected Local Imports === from components.multi_model_analyzer import MultiAgentSystem from components.neuro_symbolic_engine import NeuroSymbolicEngine from modules.secure_memory_loader import load_secure_memory_module from ethical_filter import EthicalFilter from from components.self_improving_ai import SelfImprovingAI # === External Modules (you must ensure these exist) === from CodriaoCore.federated_learning import FederatedAI from utils.database import Database from logger import logger from codriao_tb_module import CodriaoHealthModule class AICoreAGIX: def __init__(self, config_path: str = "config.json"): self.ethical_filter = EthicalFilter() self.config = self._load_config(config_path) self.models = self._initialize_models() self.context_memory = self._initialize_vector_memory() self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"]) self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"]) self.http_session = aiohttp.ClientSession() self.database = Database() self.multi_agent_system = MultiAgentSystem() self.self_improving_ai = SelfImprovingAI() self.neural_symbolic_engine = NeuroSymbolicEngine() self.federated_ai = FederatedAI() # Security + Memory key = os.environ.get("CODRIAO_SECRET_KEY").encode() self._encryption_key = key self.secure_memory_loader = SecureMemorySession(self._encryption_key) self.speech_engine = pyttsx3.init() self.health_module = CodriaoHealthModule(ai_core=self) async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]: try: # Ethical Safety Check result = self.ethical_filter.analyze_query(query) if result["status"] == "blocked": return {"error": result["reason"]} if result["status"] == "flagged": logger.warning(result["warning"]) # Check if user explicitly requests TB analysis if any(phrase in query.lower() for phrase in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]): result = await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id) return { "response": result["ethical_analysis"], "explanation": result["explanation"], "tb_risk": result["tb_risk"], "image_analysis": result["image_analysis"], "audio_analysis": result["audio_analysis"], "system_health": result["system_health"] } # Vectorize and encrypt vectorized_query = self._vectorize_query(query) self.secure_memory_loader.encrypt_vector(user_id, vectorized_query) # (Optional) retrieve memory user_vectors = self.secure_memory_loader.decrypt_vectors(user_id) # Main AI processing model_response = await self._generate_local_model_response(query) agent_response = self.multi_agent_system.delegate_task(query) self_reflection = self.self_reflective_ai.evaluate_response(query, model_response) neural_reasoning = self.neural_symbolic_engine.integrate_reasoning(query) final_response = ( f"{model_response}\n\n" f"{agent_response}\n\n" f"{self_reflection}\n\n" f"Logic: {neural_reasoning}" ) self.database.log_interaction(user_id, query, final_response) # blockchain_module.store_interaction(user_id, query, final_response) self._speak_response(final_response) return { "response": final_response, "real_time_data": self.federated_ai.get_latest_data(), "context_enhanced": True, "security_status": "Fully Secure" } except Exception as e: logger.error(f"Response generation failed: {e}") return {"error": "Processing failed - safety protocols engaged"} async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]: """Only runs TB analysis if explicitly requested.""" try: result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id) logger.info(f"TB Diagnostic Result: {result}") return result except Exception as e: logger.error(f"TB diagnostics failed: {e}") return { "tb_risk": "ERROR", "error": str(e), "image_analysis": {}, "audio_analysis": {}, "ethical_analysis": "Unable to complete TB diagnostic.", "explanation": None, "system_health": None } def _load_config(self, config_path: str) -> dict: with open(config_path, 'r') as file: return json.load(file) def _initialize_models(self): return { "agix_model": AutoModelForCausalLM.from_pretrained(self.config["model_name"]), "tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"]) } def _initialize_vector_memory(self): return faiss.IndexFlatL2(768) def _vectorize_query(self, query: str): tokenized = self.tokenizer(query, return_tensors="pt") return tokenized["input_ids"].detach().numpy() async def _generate_local_model_response(self, query: str) -> str: inputs = self.tokenizer(query, return_tensors="pt") outputs = self.model.generate(**inputs) return self.tokenizer.decode(outputs[0], skip_special_tokens=True) def _speak_response(self, response: str): self.speech_engine.say(response) self.speech_engine.runAndWait()