import gradio as gr from huggingface_hub import InferenceClient from AICoreAGIX_with_TB import AICoreAGIX # Ensure this imports your AICoreAGIX class # Initialize the AI core ai_core = AICoreAGIX() def respond(message, history, system_message, max_tokens, temperature, top_p, image, audio): # Process the uploaded files if image and audio: # Save the uploaded files to disk or process them as needed image_path = "uploaded_image.png" audio_path = "uploaded_audio.wav" image.save(image_path) audio.save(audio_path) # Run TB diagnostics tb_result = ai_core.run_tb_diagnostics(image_path, audio_path, user_id=1) # Replace with actual user_id handling # Incorporate TB diagnostic results into the response tb_message = f"TB Diagnostic Result: {tb_result['tb_risk']}\n" tb_message += f"Image Analysis: {tb_result['image_analysis']}\n" tb_message += f"Audio Analysis: {tb_result['audio_analysis']}\n" tb_message += f"Shareable Link: {tb_result['shareable_link']}\n\n" else: tb_message = "No TB diagnostic data provided.\n\n" # Existing chat functionality messages = [{"role": "system", "content": system_message}] for user_msg, bot_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if bot_msg: messages.append({"role": "assistant", "content": bot_msg}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield tb_message + response # Define the Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), gr.inputs.Image(type="pil", label="Upload Saliva Microscopy Image"), gr.inputs.Audio(type="file", label="Upload Cough Audio Recording"), ], ) if __name__ == "__main__": demo.launch()