import aiohttp import json import logging import torch import faiss import numpy as np from transformers import AutoModelForCausalLM, AutoTokenizer from typing import List, Dict, Any from cryptography.fernet import Fernet from jwt import encode, decode, ExpiredSignatureError from datetime import datetime, timedelta import blockchain_module import speech_recognition as sr import pyttsx3 from ethical_filter import EthicalFilter from components.agix_reflection import SelfReflectiveAI from components.multi_agent import MultiAgentSystem from components.ar_integration import ARDataOverlay from components.neural_symbolic import NeuralSymbolicProcessor from components.federated_learning import FederatedAI from utils.database import Database from utils.logger import logger from secure_memory import SecureMemorySession import os from cryptography.fernet import Fernet key = os.environ.get("CODRIAO_SECRET_KEY").encode() self._encryption_key = key self.secure_memory = SecureMemorySession(self._encryption_key) class AICoreAGIX: def __init__(self, config_path: str = "config.json"): self.ethical_filter = EthicalFilter() self.config = self._load_config(config_path) self.models = self._initialize_models() self.context_memory = self._initialize_vector_memory() self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"]) self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"]) self.http_session = aiohttp.ClientSession() self.database = Database() self.multi_agent_system = MultiAgentSystem() self.self_reflective_ai = SelfReflectiveAI() self.ar_overlay = ARDataOverlay() self.neural_symbolic_processor = NeuralSymbolicProcessor() self.federated_ai = FederatedAI() self._encryption_key = Fernet.generate_key() self.jwt_secret = "your_jwt_secret_key" self.secure_memory = SecureMemorySession(self._encryption_key) self.speech_engine = pyttsx3.init() async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]: try: # Ethical Safety Check result = self.ethical_filter.analyze_query(query) if result["status"] == "blocked": return {"error": result["reason"]} if result["status"] == "flagged": logger.warning(result["warning"]) # Vectorize and encrypt vectorized_query = self._vectorize_query(query) self.secure_memory.encrypt_vector(user_id, vectorized_query) # (Optional) retrieve memory for continuity user_vectors = self.secure_memory.decrypt_vectors(user_id) # Main pipeline model_response = await self._generate_local_model_response(query) agent_response = self.multi_agent_system.delegate_task(query) self_reflection = self.self_reflective_ai.evaluate_response(query, model_response) ar_data = self.ar_overlay.fetch_augmented_data(query) neural_reasoning = self.neural_symbolic_processor.process_query(query) final_response = f"{model_response}\n\n{agent_response}\n\n{self_reflection}\n\nAR Insights: {ar_data}\n\nLogic: {neural_reasoning}" self.database.log_interaction(user_id, query, final_response) blockchain_module.store_interaction(user_id, query, final_response) self._speak_response(final_response) return { "response": final_response, "real_time_data": self.federated_ai.get_latest_data(), "context_enhanced": True, "security_status": "Fully Secure" } except Exception as e: logger.error(f"Response generation failed: {e}") return {"error": "Processing failed - safety protocols engaged"} def _load_config(self, config_path: str) -> dict: with open(config_path, 'r') as file: return json.load(file) def _initialize_models(self): return { "agix_model": AutoModelForCausalLM.from_pretrained(self.config["model_name"]), "tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"]) } def _initialize_vector_memory(self): return faiss.IndexFlatL2(768) def _vectorize_query(self, query: str): tokenized = self.tokenizer(query, return_tensors="pt") return tokenized["input_ids"].detach().numpy() async def _generate_local_model_response(self, query: str) -> str: inputs = self.tokenizer(query, return_tensors="pt") outputs = self.model.generate(**inputs) return self.tokenizer.decode(outputs[0], skip_special_tokens=True) def _speak_response(self, response: str): self.speech_engine.say(response) self.speech_engine.runAndWait()