import asyncio import logging from ai_system.ai_core import AICore from tb_image_processor import TBImageProcessor from tb_audio_processor import TBAudioProcessor logger = logging.getLogger(__name__) class CodriaoHealthModule: """Embedded compassionate TB detection within Codriao's architecture""" def __init__(self, ai_core: AICore): self.ai_core = ai_core self.image_processor = TBImageProcessor() self.audio_processor = TBAudioProcessor() async def evaluate_tb_risk(self, image_path: str, audio_path: str, user_id: int): image_result, image_confidence = self.image_processor.process_image(image_path) audio_result, audio_confidence = self.audio_processor.process_audio(audio_path) if "Error" in [image_result, audio_result]: tb_risk = "UNKNOWN" elif image_result == "TB Detected" and audio_result == "TB Detected": tb_risk = "HIGH" elif image_result == "TB Detected" or audio_result == "TB Detected": tb_risk = "MEDIUM" else: tb_risk = "LOW" combined_query = ( f"Medical Analysis Input: TB image: {image_result} (confidence {image_confidence:.2f}), " f"Audio: {audio_result} (confidence {audio_confidence:.2f}). Risk Level: {tb_risk}. " f"Please respond with a kind, ethical interpretation and recommended next steps." ) response = await self.ai_core.generate_response(combined_query, user_id) return { "tb_risk": tb_risk, "image_analysis": {"result": image_result, "confidence": image_confidence}, "audio_analysis": {"result": audio_result, "confidence": audio_confidence}, "ethical_analysis": response.get("response"), "explanation": response.get("explanation"), "system_health": response.get("health"), }