File size: 4,902 Bytes
6023d8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import logging
from typing import List

class Element:
    def __init__(self, name, symbol, representation, properties, interactions, defense_ability):
        self.name = name
        self.symbol = symbol
        self.representation = representation
        self.properties = properties
        self.interactions = interactions
        self.defense_ability = defense_ability

    def execute_defense_function(self):
        message = f"{self.name} ({self.symbol}) executes its defense ability: {self.defense_ability}"
        logging.info(message)
        return message

class CustomRecognizer:
    def recognize(self, question):
        if any(element_name.lower() in question.lower() for element_name in ["hydrogen", "diamond"]):
            return RecognizerResult(question)
        return RecognizerResult(None)

    def get_top_intent(self, recognizer_result):
        return "ElementDefense" if recognizer_result.text else "None"

class RecognizerResult:
    def __init__(self, text):
        self.text = text

class UniversalReasoning:
    def __init__(self, config):
        self.config = config
        self.perspectives = self.initialize_perspectives()
        self.elements = self.initialize_elements()
        self.recognizer = CustomRecognizer()

    def initialize_perspectives(self):
        perspective_names = self.config.get('enabled_perspectives', [
            "newton", "davinci", "human_intuition", "neural_network", "quantum_computing",
            "resilient_kindness", "mathematical", "philosophical", "copilot", "bias_mitigation"
        ])
        perspective_classes = {
            "newton": NewtonPerspective,
            "davinci": DaVinciPerspective,
            "human_intuition": HumanIntuitionPerspective,
            "neural_network": NeuralNetworkPerspective,
            "quantum_computing": QuantumComputingPerspective,
            "resilient_kindness": ResilientKindnessPerspective,
            "mathematical": MathematicalPerspective,
            "philosophical": PhilosophicalPerspective,
            "copilot": CopilotPerspective,
            "bias_mitigation": BiasMitigationPerspective
        }
        perspectives = []
        for name in perspective_names:
            cls = perspective_classes.get(name.lower())
            if cls:
                perspectives.append(cls(self.config))
                logging.debug(f"Perspective '{name}' initialized.")
        return perspectives

    def initialize_elements(self):
        return [
            Element("Hydrogen", "H", "Lua", ["Simple", "Lightweight", "Versatile"],
                    ["Integrates with other languages"], "Evasion"),
            Element("Diamond", "D", "Kotlin", ["Modern", "Concise", "Safe"],
                    ["Used for Android development"], "Adaptability")
        ]

    async def generate_response(self, question):
        responses = []
        tasks = []

        for perspective in self.perspectives:
            if asyncio.iscoroutinefunction(perspective.generate_response):
                tasks.append(perspective.generate_response(question))
            else:
                async def sync_wrapper(perspective, question):
                    return perspective.generate_response(question)
                tasks.append(sync_wrapper(perspective, question))

        perspective_results = await asyncio.gather(*tasks, return_exceptions=True)

        for perspective, result in zip(self.perspectives, perspective_results):
            if isinstance(result, Exception):
                logging.error(f"Error from {perspective.__class__.__name__}: {result}")
            else:
                responses.append(result)

        recognizer_result = self.recognizer.recognize(question)
        top_intent = self.recognizer.get_top_intent(recognizer_result)
        if top_intent == "ElementDefense":
            element_name = recognizer_result.text.strip()
            element = next((el for el in self.elements if el.name.lower() in element_name.lower()), None)
            if element:
                responses.append(element.execute_defense_function())

        ethical = self.config.get("ethical_considerations", "Act transparently and respectfully.")
        responses.append(f"**Ethical Considerations:**\n{ethical}")

        return "\n\n".join(responses)

    def save_response(self, response):
        if self.config.get('enable_response_saving', False):
            path = self.config.get('response_save_path', 'responses.txt')
            with open(path, 'a', encoding='utf-8') as file:
                file.write(response + '\n')

    def backup_response(self, response):
        if self.config.get('backup_responses', {}).get('enabled', False):
            backup_path = self.config['backup_responses'].get('backup_path', 'backup_responses.txt')
            with open(backup_path, 'a', encoding='utf-8') as file:
                file.write(response + '\n')