Spaces:
Running
Running
import os | |
import json | |
import random | |
from typing import List, Dict | |
from cognition_cocooner import CognitionCocooner | |
class DreamReweaver: | |
""" | |
Reweaves cocooned thoughts into dream-like synthetic narratives or planning prompts. | |
""" | |
def __init__(self, cocoon_dir: str = "cocoons"): | |
self.cocooner = CognitionCocooner(storage_path=cocoon_dir) | |
self.dream_log = [] | |
def generate_dream_sequence(self, limit: int = 5) -> List[str]: | |
dream_sequence = [] | |
cocoons = self._load_cocoons() | |
selected = random.sample(cocoons, min(limit, len(cocoons))) | |
for cocoon in selected: | |
wrapped = cocoon.get("wrapped") | |
sequence = self._interpret_cocoon(wrapped, cocoon.get("type")) | |
self.dream_log.append(sequence) | |
dream_sequence.append(sequence) | |
return dream_sequence | |
def _interpret_cocoon(self, wrapped: str, type_: str) -> str: | |
if type_ == "prompt": | |
return f"[DreamPrompt] {wrapped}" | |
elif type_ == "function": | |
return f"[DreamFunction] {wrapped}" | |
elif type_ == "symbolic": | |
return f"[DreamSymbol] {wrapped}" | |
elif type_ == "encrypted": | |
return "[Encrypted Thought Cocoon - Decryption Required]" | |
else: | |
return "[Unknown Dream Form]" | |
def _load_cocoons(self) -> List[Dict]: | |
cocoons = [] | |
for file in os.listdir(self.cocooner.storage_path): | |
if file.endswith(".json"): | |
path = os.path.join(self.cocooner.storage_path, file) | |
with open(path, "r") as f: | |
cocoons.append(json.load(f)) | |
return cocoons | |
if __name__ == "__main__": | |
dr = DreamReweaver() | |
dreams = dr.generate_dream_sequence() | |
print("\n".join(dreams)) | |