Spaces:
Running
Running
File size: 74,229 Bytes
911c613 24f13fb a36d75e 24f13fb 911c613 24f13fb 911c613 a36d75e f5e2756 a36d75e f5e2756 a36d75e 10f0f96 a36d75e 10f0f96 24f13fb 10f0f96 911c613 24f13fb 911c613 10f0f96 911c613 70224c0 911c613 fd120b6 24f13fb 911c613 fd120b6 24f13fb 911c613 f5e2756 911c613 24f13fb 911c613 24f13fb 911c613 fd120b6 3a4cfc9 3586b53 911c613 3a4cfc9 92f87ea 3a4cfc9 92f87ea 911c613 3a4cfc9 911c613 3a4cfc9 911c613 3a4cfc9 911c613 3a4cfc9 911c613 fd120b6 24f13fb 911c613 f5e2756 911c613 8293c41 911c613 8293c41 911c613 70224c0 911c613 70224c0 911c613 70224c0 911c613 70224c0 911c613 8293c41 911c613 8293c41 911c613 8293c41 911c613 8293c41 911c613 3586b53 f5e2756 911c613 fd120b6 911c613 a36d75e 911c613 a36d75e f5e2756 a36d75e 70224c0 a36d75e 9ada299 a36d75e 70224c0 a36d75e 70224c0 a36d75e 9ada299 a36d75e 70224c0 a36d75e 9ada299 a36d75e 70224c0 a36d75e 70224c0 a36d75e 70224c0 a36d75e 70224c0 a36d75e 70224c0 a36d75e 70224c0 a36d75e 9ada299 70224c0 911c613 a36d75e 8293c41 911c613 a36d75e 911c613 8293c41 24f13fb 911c613 f991e49 911c613 f991e49 911c613 a36d75e 911c613 dcef733 a36d75e dcef733 911c613 a36d75e 911c613 6372e34 d7230b8 911c613 8293c41 911c613 8293c41 911c613 f5e2756 911c613 f5e2756 911c613 8293c41 911c613 8293c41 a36d75e c399294 911c613 a36d75e 911c613 d7230b8 8293c41 24f13fb 8293c41 d7230b8 24f13fb d7230b8 8293c41 d7230b8 8293c41 d7230b8 8293c41 24f13fb 8293c41 d7230b8 8293c41 d7230b8 8293c41 24f13fb 8293c41 911c613 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 |
import glob
import gradio as gr
import matplotlib
import numpy as np
from PIL import Image
import torch
import tempfile
from gradio_imageslider import ImageSlider
import plotly.graph_objects as go
import plotly.express as px
import open3d as o3d
from depth_anything_v2.dpt import DepthAnythingV2
import os
import tensorflow as tf
from tensorflow.keras.models import load_model
# Classification imports
from transformers import AutoImageProcessor, AutoModelForImageClassification
import google.generativeai as genai
import gdown
import spaces
import cv2
# Import actual segmentation model components
from models.deeplab import Deeplabv3, relu6, DepthwiseConv2D, BilinearUpsampling
from utils.learning.metrics import dice_coef, precision, recall
from utils.io.data import normalize
# --- Classification Model Setup ---
# Load classification model and processor
classification_processor = AutoImageProcessor.from_pretrained("Hemg/Wound-classification")
classification_model = AutoModelForImageClassification.from_pretrained("Hemg/Wound-classification")
# Configure Gemini AI
try:
# Try to get API key from Hugging Face secrets
gemini_api_key = os.getenv("GOOGLE_API_KEY")
if not gemini_api_key:
raise ValueError("GEMINI_API_KEY not found in environment variables")
genai.configure(api_key=gemini_api_key)
gemini_model = genai.GenerativeModel("gemini-2.5-pro")
print("β
Gemini AI configured successfully with API key from secrets")
except Exception as e:
print(f"β Error configuring Gemini AI: {e}")
print("Please make sure GEMINI_API_KEY is set in your Hugging Face Space secrets")
gemini_model = None
# --- Classification Functions ---
def analyze_wound_with_gemini(image, predicted_label):
"""
Analyze wound image using Gemini AI with classification context
Args:
image: PIL Image
predicted_label: The predicted wound type from classification model
Returns:
str: Gemini AI analysis
"""
if image is None:
return "No image provided for analysis."
if gemini_model is None:
return "Gemini AI is not available. Please check that GEMINI_API_KEY is properly configured in your Hugging Face Space secrets."
try:
# Ensure image is in RGB format
if image.mode != 'RGB':
image = image.convert('RGB')
# Create prompt that includes the classification result
prompt = f"""You are assisting in a medical education and research task.
Based on the wound classification model, this image has been identified as: {predicted_label}
Please provide an educational analysis of this wound image focusing on:
1. Visible characteristics of the wound (size, color, texture, edges, surrounding tissue)
2. Educational explanation about this type of wound based on the classification: {predicted_label}
3. General wound healing stages if applicable
4. Key features that are typically associated with this wound type
Important guidelines:
- This is for educational and research purposes only
- Do not provide medical advice or diagnosis
- Keep the analysis objective and educational
- Focus on visible features and general wound characteristics
- Do not recommend treatments or medical interventions
Please provide a comprehensive educational analysis."""
response = gemini_model.generate_content([prompt, image])
return response.text
except Exception as e:
return f"Error analyzing image with Gemini: {str(e)}"
def analyze_wound_depth_with_gemini(image, depth_map, depth_stats):
"""
Analyze wound depth and severity using Gemini AI with depth analysis context
Args:
image: Original wound image (PIL Image or numpy array)
depth_map: Depth map (numpy array)
depth_stats: Dictionary containing depth analysis statistics
Returns:
str: Gemini AI medical assessment based on depth analysis
"""
if image is None or depth_map is None:
return "No image or depth map provided for analysis."
if gemini_model is None:
return "Gemini AI is not available. Please check that GEMINI_API_KEY is properly configured in your Hugging Face Space secrets."
try:
# Convert numpy array to PIL Image if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Ensure image is in RGB format
if image.mode != 'RGB':
image = image.convert('RGB')
# Convert depth map to PIL Image for Gemini
if isinstance(depth_map, np.ndarray):
# Normalize depth map for visualization
norm_depth = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min()) * 255.0
depth_image = Image.fromarray(norm_depth.astype(np.uint8))
else:
depth_image = depth_map
# Create detailed prompt with depth statistics
prompt = f"""You are a medical AI assistant specializing in wound assessment. Analyze this wound using both the original image and depth map data.
DEPTH ANALYSIS DATA PROVIDED:
- Total Wound Area: {depth_stats['total_area_cm2']:.2f} cmΒ²
- Mean Depth: {depth_stats['mean_depth_mm']:.1f} mm
- Maximum Depth: {depth_stats['max_depth_mm']:.1f} mm
- Depth Standard Deviation: {depth_stats['depth_std_mm']:.1f} mm
- Wound Volume: {depth_stats['wound_volume_cm3']:.2f} cmΒ³
- Deep Tissue Involvement: {depth_stats['deep_ratio']*100:.1f}%
- Analysis Quality: {depth_stats['analysis_quality']}
- Depth Consistency: {depth_stats['depth_consistency']}
TISSUE DEPTH DISTRIBUTION:
- Superficial Areas (0-2mm): {depth_stats['superficial_area_cm2']:.2f} cmΒ²
- Partial Thickness (2-4mm): {depth_stats['partial_thickness_area_cm2']:.2f} cmΒ²
- Full Thickness (4-6mm): {depth_stats['full_thickness_area_cm2']:.2f} cmΒ²
- Deep Areas (>6mm): {depth_stats['deep_area_cm2']:.2f} cmΒ²
STATISTICAL DEPTH ANALYSIS:
- 25th Percentile Depth: {depth_stats['depth_percentiles']['25']:.1f} mm
- Median Depth: {depth_stats['depth_percentiles']['50']:.1f} mm
- 75th Percentile Depth: {depth_stats['depth_percentiles']['75']:.1f} mm
Please provide a comprehensive medical assessment focusing on:
1. **WOUND CHARACTERISTICS ANALYSIS**
- Visible wound features from the original image
- Correlation between visual appearance and depth measurements
- Tissue quality assessment based on color, texture, and depth data
2. **DEPTH-BASED SEVERITY ASSESSMENT**
- Clinical significance of the measured depths
- Tissue layer involvement based on depth measurements
- Risk assessment based on deep tissue involvement percentage
3. **HEALING PROGNOSIS**
- Expected healing timeline based on depth and area measurements
- Factors that may affect healing based on depth distribution
- Complexity assessment based on wound volume and depth variation
4. **CLINICAL CONSIDERATIONS**
- Significance of depth consistency/inconsistency
- Areas of particular concern based on depth analysis
- Educational insights about this type of wound presentation
5. **MEASUREMENT INTERPRETATION**
- Clinical relevance of the statistical depth measurements
- What the depth distribution tells us about wound progression
- Comparison to typical wound depth classifications
IMPORTANT GUIDELINES:
- This is for educational and research purposes only
- Do not provide specific medical advice or treatment recommendations
- Focus on objective analysis of the provided measurements
- Correlate visual findings with quantitative depth data
- Maintain educational and clinical terminology
- Emphasize the relationship between depth measurements and clinical significance
Provide a detailed, structured medical assessment that integrates both visual and quantitative depth analysis."""
# Send both images to Gemini for analysis
response = gemini_model.generate_content([prompt, image, depth_image])
return response.text
except Exception as e:
return f"Error analyzing wound with Gemini AI: {str(e)}"
def classify_wound(image):
"""
Classify wound type from uploaded image
Args:
image: PIL Image or numpy array
Returns:
dict: Classification results with confidence scores
"""
if image is None:
return "Please upload an image"
# Convert to PIL Image if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Ensure image is in RGB format
if image.mode != 'RGB':
image = image.convert('RGB')
try:
# Process the image
inputs = classification_processor(images=image, return_tensors="pt")
# Get model predictions
with torch.no_grad():
outputs = classification_model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits[0], dim=-1)
# Get the predicted class labels and confidence scores
confidence_scores = predictions.numpy()
# Create results dictionary
results = {}
for i, score in enumerate(confidence_scores):
# Get class name from model config
class_name = classification_model.config.id2label[i] if hasattr(classification_model.config, 'id2label') else f"Class {i}"
results[class_name] = float(score)
return results
except Exception as e:
return f"Error processing image: {str(e)}"
def classify_and_analyze_wound(image):
"""
Combined function to classify wound and get Gemini analysis
Args:
image: PIL Image or numpy array
Returns:
tuple: (classification_results, gemini_analysis)
"""
if image is None:
return "Please upload an image", "Please upload an image for analysis"
# Get classification results
classification_results = classify_wound(image)
# Get the top predicted label for Gemini analysis
if isinstance(classification_results, dict) and classification_results:
# Get the label with highest confidence
top_label = max(classification_results.items(), key=lambda x: x[1])[0]
# Get Gemini analysis
gemini_analysis = analyze_wound_with_gemini(image, top_label)
else:
top_label = "Unknown"
gemini_analysis = "Unable to analyze due to classification error"
return classification_results, gemini_analysis
def format_gemini_analysis(analysis):
"""Format Gemini analysis as properly structured HTML"""
if not analysis or "Error" in analysis:
return f"""
<div style="
background-color: #fee2e2;
border-radius: 12px;
padding: 16px;
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
font-family: Arial, sans-serif;
min-height: 300px;
border-left: 4px solid #ef4444;
">
<h4 style="color: #dc2626; margin-top: 0;">Analysis Error</h4>
<p style="color: #991b1b;">{analysis}</p>
</div>
"""
# Parse the markdown-style response and convert to HTML
formatted_analysis = parse_markdown_to_html(analysis)
return f"""
<div style="
border-radius: 12px;
padding: 25px;
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
min-height: 300px;
border-left: 4px solid #d97706;
max-height: 600px;
overflow-y: auto;
">
<h3 style="color: #d97706; margin-top: 0; margin-bottom: 20px; display: flex; align-items: center; gap: 8px;">
Initial Wound Analysis
</h3>
<div style="color: white; line-height: 1.7;">
{formatted_analysis}
</div>
</div>
"""
def format_gemini_depth_analysis(analysis):
"""Format Gemini depth analysis as properly structured HTML for medical assessment"""
if not analysis or "Error" in analysis:
return f"""
<div style="color: #ffffff; line-height: 1.6;">
<div style="font-size: 16px; font-weight: bold; margin-bottom: 10px; color: #f44336;">
β AI Analysis Error
</div>
<div style="color: #cccccc;">
{analysis}
</div>
</div>
"""
# Parse the markdown-style response and convert to HTML
formatted_analysis = parse_markdown_to_html(analysis)
return f"""
<div style="color: #ffffff; line-height: 1.6;">
<div style="font-size: 16px; font-weight: bold; margin-bottom: 15px; color: #4CAF50;">
π€ AI-Powered Medical Assessment
</div>
<div style="color: #cccccc; max-height: 400px; overflow-y: auto; padding-right: 10px;">
{formatted_analysis}
</div>
</div>
"""
def parse_markdown_to_html(text):
"""Convert markdown-style text to HTML"""
import re
# Replace markdown headers
text = re.sub(r'^### \*\*(.*?)\*\*$', r'<h4 style="color: #d97706; margin: 20px 0 10px 0; font-weight: bold;">\1</h4>', text, flags=re.MULTILINE)
text = re.sub(r'^#### \*\*(.*?)\*\*$', r'<h5 style="color: #f59e0b; margin: 15px 0 8px 0; font-weight: bold;">\1</h5>', text, flags=re.MULTILINE)
text = re.sub(r'^### (.*?)$', r'<h4 style="color: #d97706; margin: 20px 0 10px 0; font-weight: bold;">\1</h4>', text, flags=re.MULTILINE)
text = re.sub(r'^#### (.*?)$', r'<h5 style="color: #f59e0b; margin: 15px 0 8px 0; font-weight: bold;">\1</h5>', text, flags=re.MULTILINE)
# Replace bold text
text = re.sub(r'\*\*(.*?)\*\*', r'<strong style="color: #fbbf24;">\1</strong>', text)
# Replace italic text
text = re.sub(r'\*(.*?)\*', r'<em style="color: #fde68a;">\1</em>', text)
# Replace bullet points
text = re.sub(r'^\* (.*?)$', r'<li style="margin: 5px 0; color: white;">\1</li>', text, flags=re.MULTILINE)
text = re.sub(r'^ \* (.*?)$', r'<li style="margin: 3px 0; margin-left: 20px; color: white;">\1</li>', text, flags=re.MULTILINE)
# Wrap consecutive list items in ul tags
text = re.sub(r'(<li.*?</li>(?:\s*<li.*?</li>)*)', r'<ul style="margin: 10px 0; padding-left: 20px;">\1</ul>', text, flags=re.DOTALL)
# Replace numbered lists
text = re.sub(r'^(\d+)\.\s+(.*?)$', r'<div style="margin: 8px 0; color: white;"><strong style="color: #d97706;">\1.</strong> \2</div>', text, flags=re.MULTILINE)
# Convert paragraphs (double newlines)
paragraphs = text.split('\n\n')
formatted_paragraphs = []
for para in paragraphs:
para = para.strip()
if para:
# Skip if it's already wrapped in HTML tags
if not (para.startswith('<') or para.endswith('>')):
para = f'<p style="margin: 12px 0; color: white; text-align: justify;">{para}</p>'
formatted_paragraphs.append(para)
return '\n'.join(formatted_paragraphs)
def combined_analysis(image):
"""Combined function for UI that returns both outputs"""
classification, gemini_analysis = classify_and_analyze_wound(image)
formatted_analysis = format_gemini_analysis(gemini_analysis)
return classification, formatted_analysis
# Define path and file ID
checkpoint_dir = "checkpoints"
os.makedirs(checkpoint_dir, exist_ok=True)
model_file = os.path.join(checkpoint_dir, "depth_anything_v2_vitl.pth")
gdrive_url = "https://drive.google.com/uc?id=141Mhq2jonkUBcVBnNqNSeyIZYtH5l4K5"
# Download if not already present
if not os.path.exists(model_file):
print("Downloading model from Google Drive...")
gdown.download(gdrive_url, model_file, quiet=False)
# --- TensorFlow: Check GPU Availability ---
gpus = tf.config.list_physical_devices('GPU')
if gpus:
print("TensorFlow is using GPU")
else:
print("TensorFlow is using CPU")
# --- Load Actual Wound Segmentation Model ---
class WoundSegmentationModel:
def __init__(self):
self.input_dim_x = 224
self.input_dim_y = 224
self.model = None
self.load_model()
def load_model(self):
"""Load the trained wound segmentation model"""
try:
# Try to load the most recent model
weight_file_name = '2025-08-07_16-25-27.hdf5'
model_path = f'./training_history/{weight_file_name}'
self.model = load_model(model_path,
custom_objects={
'recall': recall,
'precision': precision,
'dice_coef': dice_coef,
'relu6': relu6,
'DepthwiseConv2D': DepthwiseConv2D,
'BilinearUpsampling': BilinearUpsampling
})
print(f"Segmentation model loaded successfully from {model_path}")
except Exception as e:
print(f"Error loading segmentation model: {e}")
# Fallback to the older model
try:
weight_file_name = '2019-12-19 01%3A53%3A15.480800.hdf5'
model_path = f'./training_history/{weight_file_name}'
self.model = load_model(model_path,
custom_objects={
'recall': recall,
'precision': precision,
'dice_coef': dice_coef,
'relu6': relu6,
'DepthwiseConv2D': DepthwiseConv2D,
'BilinearUpsampling': BilinearUpsampling
})
print(f"Segmentation model loaded successfully from {model_path}")
except Exception as e2:
print(f"Error loading fallback segmentation model: {e2}")
self.model = None
def preprocess_image(self, image):
"""Preprocess the uploaded image for model input"""
if image is None:
return None
# Convert to RGB if needed
if len(image.shape) == 3 and image.shape[2] == 3:
# Convert BGR to RGB if needed
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Resize to model input size
image = cv2.resize(image, (self.input_dim_x, self.input_dim_y))
# Normalize the image
image = image.astype(np.float32) / 255.0
# Add batch dimension
image = np.expand_dims(image, axis=0)
return image
def postprocess_prediction(self, prediction):
"""Postprocess the model prediction"""
# Remove batch dimension
prediction = prediction[0]
# Apply threshold to get binary mask
threshold = 0.5
binary_mask = (prediction > threshold).astype(np.uint8) * 255
return binary_mask
def segment_wound(self, input_image):
"""Main function to segment wound from uploaded image"""
if self.model is None:
return None, "Error: Segmentation model not loaded. Please check the model files."
if input_image is None:
return None, "Please upload an image."
try:
# Preprocess the image
processed_image = self.preprocess_image(input_image)
if processed_image is None:
return None, "Error processing image."
# Make prediction
prediction = self.model.predict(processed_image, verbose=0)
# Postprocess the prediction
segmented_mask = self.postprocess_prediction(prediction)
return segmented_mask, "Segmentation completed successfully!"
except Exception as e:
return None, f"Error during segmentation: {str(e)}"
# Initialize the segmentation model
segmentation_model = WoundSegmentationModel()
# --- PyTorch: Set Device and Load Depth Model ---
map_device = torch.device("cuda" if torch.cuda.is_available() and torch.cuda.device_count() > 0 else "cpu")
print(f"Using PyTorch device: {map_device}")
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder = 'vitl'
depth_model = DepthAnythingV2(**model_configs[encoder])
state_dict = torch.load(
f'checkpoints/depth_anything_v2_{encoder}.pth',
map_location=map_device
)
depth_model.load_state_dict(state_dict)
depth_model = depth_model.to(map_device).eval()
# --- Custom CSS for unified dark theme ---
css = """
.gradio-container {
font-family: 'Segoe UI', sans-serif;
background-color: #121212;
color: #ffffff;
padding: 20px;
}
.gr-button {
background-color: #2c3e50;
color: white;
border-radius: 10px;
}
.gr-button:hover {
background-color: #34495e;
}
.gr-html, .gr-html div {
white-space: normal !important;
overflow: visible !important;
text-overflow: unset !important;
word-break: break-word !important;
}
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
#download {
height: 62px;
}
h1 {
text-align: center;
font-size: 3rem;
font-weight: bold;
margin: 2rem 0;
color: #ffffff;
}
h2 {
color: #ffffff;
text-align: center;
margin: 1rem 0;
}
.gr-tabs {
background-color: #1e1e1e;
border-radius: 10px;
padding: 10px;
}
.gr-tab-nav {
background-color: #2c3e50;
border-radius: 8px;
}
.gr-tab-nav button {
color: #ffffff !important;
}
.gr-tab-nav button.selected {
background-color: #34495e !important;
}
/* Card styling for consistent heights */
.wound-card {
min-height: 200px !important;
display: flex !important;
flex-direction: column !important;
justify-content: space-between !important;
}
.wound-card-content {
flex-grow: 1 !important;
display: flex !important;
flex-direction: column !important;
justify-content: center !important;
}
/* Loading animation */
.loading-spinner {
display: inline-block;
width: 20px;
height: 20px;
border: 3px solid #f3f3f3;
border-top: 3px solid #3498db;
border-radius: 50%;
animation: spin 1s linear infinite;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
"""
# --- Enhanced Wound Severity Estimation Functions ---
def compute_enhanced_depth_statistics(depth_map, mask, pixel_spacing_mm=0.5, depth_calibration_mm=15.0):
"""
Enhanced depth analysis with proper calibration and medical standards
Based on wound depth classification standards:
- Superficial: 0-2mm (epidermis only)
- Partial thickness: 2-4mm (epidermis + partial dermis)
- Full thickness: 4-6mm (epidermis + full dermis)
- Deep: >6mm (involving subcutaneous tissue)
"""
# Convert pixel spacing to mm
pixel_spacing_mm = float(pixel_spacing_mm)
# Calculate pixel area in cmΒ²
pixel_area_cm2 = (pixel_spacing_mm / 10.0) ** 2
# Extract wound region (binary mask)
wound_mask = (mask > 127).astype(np.uint8)
# Apply morphological operations to clean the mask
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
wound_mask = cv2.morphologyEx(wound_mask, cv2.MORPH_CLOSE, kernel)
# Get depth values only for wound region
wound_depths = depth_map[wound_mask > 0]
if len(wound_depths) == 0:
return {
'total_area_cm2': 0,
'superficial_area_cm2': 0,
'partial_thickness_area_cm2': 0,
'full_thickness_area_cm2': 0,
'deep_area_cm2': 0,
'mean_depth_mm': 0,
'max_depth_mm': 0,
'depth_std_mm': 0,
'deep_ratio': 0,
'wound_volume_cm3': 0,
'depth_percentiles': {'25': 0, '50': 0, '75': 0}
}
# Normalize depth relative to nearest point in wound area
normalized_depth_map, nearest_point_coords, max_relative_depth = normalize_depth_relative_to_nearest_point(depth_map, wound_mask)
# Calibrate the normalized depth map for more accurate measurements
calibrated_depth_map = calibrate_depth_map(normalized_depth_map, reference_depth_mm=depth_calibration_mm)
# Get calibrated depth values for wound region
wound_depths_mm = calibrated_depth_map[wound_mask > 0]
# Medical depth classification
superficial_mask = wound_depths_mm < 2.0
partial_thickness_mask = (wound_depths_mm >= 2.0) & (wound_depths_mm < 4.0)
full_thickness_mask = (wound_depths_mm >= 4.0) & (wound_depths_mm < 6.0)
deep_mask = wound_depths_mm >= 6.0
# Calculate areas
total_pixels = np.sum(wound_mask > 0)
total_area_cm2 = total_pixels * pixel_area_cm2
superficial_area_cm2 = np.sum(superficial_mask) * pixel_area_cm2
partial_thickness_area_cm2 = np.sum(partial_thickness_mask) * pixel_area_cm2
full_thickness_area_cm2 = np.sum(full_thickness_mask) * pixel_area_cm2
deep_area_cm2 = np.sum(deep_mask) * pixel_area_cm2
# Calculate depth statistics
mean_depth_mm = np.mean(wound_depths_mm)
max_depth_mm = np.max(wound_depths_mm)
depth_std_mm = np.std(wound_depths_mm)
# Calculate depth percentiles
depth_percentiles = {
'25': np.percentile(wound_depths_mm, 25),
'50': np.percentile(wound_depths_mm, 50),
'75': np.percentile(wound_depths_mm, 75)
}
# Calculate depth distribution statistics
depth_distribution = {
'shallow_ratio': np.sum(wound_depths_mm < 2.0) / len(wound_depths_mm) if len(wound_depths_mm) > 0 else 0,
'moderate_ratio': np.sum((wound_depths_mm >= 2.0) & (wound_depths_mm < 5.0)) / len(wound_depths_mm) if len(wound_depths_mm) > 0 else 0,
'deep_ratio': np.sum(wound_depths_mm >= 5.0) / len(wound_depths_mm) if len(wound_depths_mm) > 0 else 0
}
# Calculate wound volume (approximate)
# Volume = area * average depth
wound_volume_cm3 = total_area_cm2 * (mean_depth_mm / 10.0)
# Deep tissue ratio
deep_ratio = deep_area_cm2 / total_area_cm2 if total_area_cm2 > 0 else 0
# Calculate analysis quality metrics
wound_pixel_count = len(wound_depths_mm)
analysis_quality = "High" if wound_pixel_count > 1000 else "Medium" if wound_pixel_count > 500 else "Low"
# Calculate depth consistency (lower std dev = more consistent)
depth_consistency = "High" if depth_std_mm < 2.0 else "Medium" if depth_std_mm < 4.0 else "Low"
return {
'total_area_cm2': total_area_cm2,
'superficial_area_cm2': superficial_area_cm2,
'partial_thickness_area_cm2': partial_thickness_area_cm2,
'full_thickness_area_cm2': full_thickness_area_cm2,
'deep_area_cm2': deep_area_cm2,
'mean_depth_mm': mean_depth_mm,
'max_depth_mm': max_depth_mm,
'depth_std_mm': depth_std_mm,
'deep_ratio': deep_ratio,
'wound_volume_cm3': wound_volume_cm3,
'depth_percentiles': depth_percentiles,
'depth_distribution': depth_distribution,
'analysis_quality': analysis_quality,
'depth_consistency': depth_consistency,
'wound_pixel_count': wound_pixel_count,
'nearest_point_coords': nearest_point_coords,
'max_relative_depth': max_relative_depth,
'normalized_depth_map': normalized_depth_map
}
def classify_wound_severity_by_enhanced_metrics(depth_stats):
"""
Enhanced wound severity classification based on medical standards
Uses multiple criteria: depth, area, volume, and tissue involvement
"""
if depth_stats['total_area_cm2'] == 0:
return "Unknown"
# Extract key metrics
total_area = depth_stats['total_area_cm2']
deep_area = depth_stats['deep_area_cm2']
full_thickness_area = depth_stats['full_thickness_area_cm2']
mean_depth = depth_stats['mean_depth_mm']
max_depth = depth_stats['max_depth_mm']
wound_volume = depth_stats['wound_volume_cm3']
deep_ratio = depth_stats['deep_ratio']
# Medical severity classification criteria
severity_score = 0
# Criterion 1: Maximum depth
if max_depth >= 10.0:
severity_score += 3 # Very severe
elif max_depth >= 6.0:
severity_score += 2 # Severe
elif max_depth >= 4.0:
severity_score += 1 # Moderate
# Criterion 2: Mean depth
if mean_depth >= 5.0:
severity_score += 2
elif mean_depth >= 3.0:
severity_score += 1
# Criterion 3: Deep tissue involvement ratio
if deep_ratio >= 0.5:
severity_score += 3 # More than 50% deep tissue
elif deep_ratio >= 0.25:
severity_score += 2 # 25-50% deep tissue
elif deep_ratio >= 0.1:
severity_score += 1 # 10-25% deep tissue
# Criterion 4: Total wound area
if total_area >= 10.0:
severity_score += 2 # Large wound (>10 cmΒ²)
elif total_area >= 5.0:
severity_score += 1 # Medium wound (5-10 cmΒ²)
# Criterion 5: Wound volume
if wound_volume >= 5.0:
severity_score += 2 # High volume
elif wound_volume >= 2.0:
severity_score += 1 # Medium volume
# Determine severity based on total score
if severity_score >= 8:
return "Very Severe"
elif severity_score >= 6:
return "Severe"
elif severity_score >= 4:
return "Moderate"
elif severity_score >= 2:
return "Mild"
else:
return "Superficial"
def analyze_wound_severity(image, depth_map, wound_mask, pixel_spacing_mm=0.5, depth_calibration_mm=15.0):
"""Enhanced wound severity analysis based on depth measurements"""
if image is None or depth_map is None or wound_mask is None:
return "β Please upload image, depth map, and wound mask."
# Convert wound mask to grayscale if needed
if len(wound_mask.shape) == 3:
wound_mask = np.mean(wound_mask, axis=2)
# Ensure depth map and mask have same dimensions
if depth_map.shape[:2] != wound_mask.shape[:2]:
# Resize mask to match depth map
from PIL import Image
mask_pil = Image.fromarray(wound_mask.astype(np.uint8))
mask_pil = mask_pil.resize((depth_map.shape[1], depth_map.shape[0]))
wound_mask = np.array(mask_pil)
# Compute enhanced statistics with relative depth normalization
stats = compute_enhanced_depth_statistics(depth_map, wound_mask, pixel_spacing_mm, depth_calibration_mm)
# Get severity based on enhanced metrics
severity_level = classify_wound_severity_by_enhanced_metrics(stats)
severity_description = get_enhanced_severity_description(severity_level)
# Get Gemini AI analysis based on depth data
gemini_analysis = analyze_wound_depth_with_gemini(image, depth_map, stats)
# Format Gemini analysis for display
formatted_gemini_analysis = format_gemini_depth_analysis(gemini_analysis)
# Create depth analysis visualization
depth_visualization = create_depth_analysis_visualization(
stats['normalized_depth_map'], wound_mask,
stats['nearest_point_coords'], stats['max_relative_depth']
)
# Enhanced severity color coding
severity_color = {
"Superficial": "#4CAF50", # Green
"Mild": "#8BC34A", # Light Green
"Moderate": "#FF9800", # Orange
"Severe": "#F44336", # Red
"Very Severe": "#9C27B0" # Purple
}.get(severity_level, "#9E9E9E") # Gray for unknown
# Create comprehensive medical report
report = f"""
<div style='padding: 20px; background-color: #1e1e1e; border-radius: 12px; box-shadow: 0 0 10px rgba(0,0,0,0.5);'>
<div style='font-size: 24px; font-weight: bold; color: {severity_color}; margin-bottom: 15px;'>
π©Ή Enhanced Wound Severity Analysis
</div>
<div style='background-color: #2c2c2c; padding: 15px; border-radius: 8px; margin-bottom: 20px;'>
<div style='font-size: 18px; font-weight: bold; color: #ffffff; margin-bottom: 15px; text-align: center;'>
π Depth & Quality Analysis
</div>
<div style='color: #cccccc; line-height: 1.6; display: grid; grid-template-columns: 1fr 1fr 1fr; gap: 20px;'>
<div>
<div style='font-size: 16px; font-weight: bold; color: #ff9800; margin-bottom: 8px;'>οΏ½ Basic Measurements</div>
<div>οΏ½π <b>Mean Relative Depth:</b> {stats['mean_depth_mm']:.1f} mm</div>
<div>π <b>Max Relative Depth:</b> {stats['max_depth_mm']:.1f} mm</div>
<div>π <b>Depth Std Dev:</b> {stats['depth_std_mm']:.1f} mm</div>
<div>π¦ <b>Wound Volume:</b> {stats['wound_volume_cm3']:.2f} cmΒ³</div>
<div>π₯ <b>Deep Tissue Ratio:</b> {stats['deep_ratio']*100:.1f}%</div>
</div>
<div>
<div style='font-size: 16px; font-weight: bold; color: #4CAF50; margin-bottom: 8px;'>π Statistical Analysis</div>
<div>οΏ½ <b>25th Percentile:</b> {stats['depth_percentiles']['25']:.1f} mm</div>
<div>π <b>Median (50th):</b> {stats['depth_percentiles']['50']:.1f} mm</div>
<div>π <b>75th Percentile:</b> {stats['depth_percentiles']['75']:.1f} mm</div>
<div>π <b>Shallow Areas:</b> {stats['depth_distribution']['shallow_ratio']*100:.1f}%</div>
<div>π <b>Moderate Areas:</b> {stats['depth_distribution']['moderate_ratio']*100:.1f}%</div>
</div>
<div>
<div style='font-size: 16px; font-weight: bold; color: #2196F3; margin-bottom: 8px;'>π Quality Metrics</div>
<div>π <b>Analysis Quality:</b> {stats['analysis_quality']}</div>
<div>π <b>Depth Consistency:</b> {stats['depth_consistency']}</div>
<div>π <b>Data Points:</b> {stats['wound_pixel_count']:,}</div>
<div>π <b>Deep Areas:</b> {stats['depth_distribution']['deep_ratio']*100:.1f}%</div>
<div>π― <b>Reference Point:</b> Nearest to camera</div>
</div>
</div>
</div>
<div style='background-color: #2c2c2c; padding: 15px; border-radius: 8px; margin-bottom: 20px; border-left: 4px solid {severity_color};'>
<div style='font-size: 18px; font-weight: bold; color: {severity_color}; margin-bottom: 10px;'>
π Medical Assessment Based on Depth Analysis
</div>
{formatted_gemini_analysis}
</div>
</div>
"""
return report
def normalize_depth_relative_to_nearest_point(depth_map, wound_mask):
"""
Normalize depth map relative to the nearest point in the wound area
This assumes a top-down camera perspective where the closest point to camera = 0 depth
Args:
depth_map: Raw depth map
wound_mask: Binary mask of wound region
Returns:
normalized_depth: Depth values relative to nearest point (0 = nearest, positive = deeper)
nearest_point_coords: Coordinates of the nearest point
max_relative_depth: Maximum relative depth in the wound
"""
if depth_map is None or wound_mask is None:
return depth_map, None, 0
# Convert mask to binary
binary_mask = (wound_mask > 127).astype(np.uint8)
# Find wound region coordinates
wound_coords = np.where(binary_mask > 0)
if len(wound_coords[0]) == 0:
return depth_map, None, 0
# Get depth values only for wound region
wound_depths = depth_map[wound_coords]
# Find the nearest point (minimum depth value in wound region)
nearest_depth = np.min(wound_depths)
nearest_indices = np.where(wound_depths == nearest_depth)
# Get coordinates of the nearest point(s)
nearest_point_coords = (wound_coords[0][nearest_indices[0][0]],
wound_coords[1][nearest_indices[0][0]])
# Create normalized depth map (relative to nearest point)
normalized_depth = depth_map.copy()
normalized_depth = normalized_depth - nearest_depth
# Ensure all values are non-negative (nearest point = 0, others = positive)
normalized_depth = np.maximum(normalized_depth, 0)
# Calculate maximum relative depth in wound region
wound_normalized_depths = normalized_depth[wound_coords]
max_relative_depth = np.max(wound_normalized_depths)
return normalized_depth, nearest_point_coords, max_relative_depth
def calibrate_depth_map(depth_map, reference_depth_mm=10.0):
"""
Calibrate depth map to real-world measurements using reference depth
This helps convert normalized depth values to actual millimeters
"""
if depth_map is None:
return depth_map
# Find the maximum depth value in the depth map
max_depth_value = np.max(depth_map)
min_depth_value = np.min(depth_map)
if max_depth_value == min_depth_value:
return depth_map
# Apply calibration to convert to millimeters
# Assuming the maximum depth in the map corresponds to reference_depth_mm
calibrated_depth = (depth_map - min_depth_value) / (max_depth_value - min_depth_value) * reference_depth_mm
return calibrated_depth
def create_depth_analysis_visualization(depth_map, wound_mask, nearest_point_coords, max_relative_depth):
"""
Create a visualization showing the depth analysis with nearest point and deepest point highlighted
"""
if depth_map is None or wound_mask is None:
return None
# Create a copy of the depth map for visualization
vis_depth = depth_map.copy()
# Apply colormap for better visualization
normalized_depth = (vis_depth - np.min(vis_depth)) / (np.max(vis_depth) - np.min(vis_depth))
colored_depth = (matplotlib.colormaps.get_cmap('Spectral_r')(normalized_depth)[:, :, :3] * 255).astype(np.uint8)
# Convert to RGB if grayscale
if len(colored_depth.shape) == 3 and colored_depth.shape[2] == 1:
colored_depth = cv2.cvtColor(colored_depth, cv2.COLOR_GRAY2RGB)
# Highlight the nearest point (reference point) with a red circle
if nearest_point_coords is not None:
y, x = nearest_point_coords
cv2.circle(colored_depth, (x, y), 10, (255, 0, 0), 2) # Red circle for nearest point
cv2.putText(colored_depth, "REF", (x+15, y-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
# Find and highlight the deepest point
binary_mask = (wound_mask > 127).astype(np.uint8)
wound_coords = np.where(binary_mask > 0)
if len(wound_coords[0]) > 0:
# Get depth values for wound region
wound_depths = vis_depth[wound_coords]
max_depth_idx = np.argmax(wound_depths)
deepest_point_coords = (wound_coords[0][max_depth_idx], wound_coords[1][max_depth_idx])
# Highlight the deepest point with a blue circle
y, x = deepest_point_coords
cv2.circle(colored_depth, (x, y), 12, (0, 0, 255), 3) # Blue circle for deepest point
cv2.putText(colored_depth, "DEEP", (x+15, y+5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
# Overlay wound mask outline
contours, _ = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(colored_depth, contours, -1, (0, 255, 0), 2) # Green outline for wound boundary
return colored_depth
def get_enhanced_severity_description(severity):
"""Get comprehensive medical description for severity level"""
descriptions = {
"Superficial": "Epidermis-only damage. Minimal tissue loss, typically heals within 1-2 weeks with basic wound care.",
"Mild": "Superficial to partial thickness wound. Limited tissue involvement, good healing potential with proper care.",
"Moderate": "Partial to full thickness involvement. Requires careful monitoring and may need advanced wound care techniques.",
"Severe": "Full thickness with deep tissue involvement. High risk of complications, requires immediate medical attention.",
"Very Severe": "Extensive deep tissue damage. Critical condition requiring immediate surgical intervention and specialized care.",
"Unknown": "Unable to determine severity due to insufficient data or poor image quality."
}
return descriptions.get(severity, "Severity assessment unavailable.")
def create_sample_wound_mask(image_shape, center=None, radius=50):
"""Create a sample circular wound mask for testing"""
if center is None:
center = (image_shape[1] // 2, image_shape[0] // 2)
mask = np.zeros(image_shape[:2], dtype=np.uint8)
y, x = np.ogrid[:image_shape[0], :image_shape[1]]
# Create circular mask
dist_from_center = np.sqrt((x - center[0])**2 + (y - center[1])**2)
mask[dist_from_center <= radius] = 255
return mask
def create_realistic_wound_mask(image_shape, method='elliptical'):
"""Create a more realistic wound mask with irregular shapes"""
h, w = image_shape[:2]
mask = np.zeros((h, w), dtype=np.uint8)
if method == 'elliptical':
# Create elliptical wound mask
center = (w // 2, h // 2)
radius_x = min(w, h) // 3
radius_y = min(w, h) // 4
y, x = np.ogrid[:h, :w]
# Add some irregularity to make it more realistic
ellipse = ((x - center[0])**2 / (radius_x**2) +
(y - center[1])**2 / (radius_y**2)) <= 1
# Add some noise and irregularity
noise = np.random.random((h, w)) > 0.8
mask = (ellipse | noise).astype(np.uint8) * 255
elif method == 'irregular':
# Create irregular wound mask
center = (w // 2, h // 2)
radius = min(w, h) // 4
y, x = np.ogrid[:h, :w]
base_circle = np.sqrt((x - center[0])**2 + (y - center[1])**2) <= radius
# Add irregular extensions
extensions = np.zeros_like(base_circle)
for i in range(3):
angle = i * 2 * np.pi / 3
ext_x = int(center[0] + radius * 0.8 * np.cos(angle))
ext_y = int(center[1] + radius * 0.8 * np.sin(angle))
ext_radius = radius // 3
ext_circle = np.sqrt((x - ext_x)**2 + (y - ext_y)**2) <= ext_radius
extensions = extensions | ext_circle
mask = (base_circle | extensions).astype(np.uint8) * 255
# Apply morphological operations to smooth the mask
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
return mask
# --- Depth Estimation Functions ---
def predict_depth(image):
return depth_model.infer_image(image)
def calculate_max_points(image):
"""Calculate maximum points based on image dimensions (3x pixel count)"""
if image is None:
return 10000 # Default value
h, w = image.shape[:2]
max_points = h * w * 3
# Ensure minimum and reasonable maximum values
return max(1000, min(max_points, 300000))
def update_slider_on_image_upload(image):
"""Update the points slider when an image is uploaded"""
max_points = calculate_max_points(image)
default_value = min(10000, max_points // 10) # 10% of max points as default
return gr.Slider(minimum=1000, maximum=max_points, value=default_value, step=1000,
label=f"Number of 3D points (max: {max_points:,})")
def create_point_cloud(image, depth_map, focal_length_x=470.4, focal_length_y=470.4, max_points=30000):
"""Create a point cloud from depth map using camera intrinsics with high detail"""
h, w = depth_map.shape
# Use smaller step for higher detail (reduced downsampling)
step = max(1, int(np.sqrt(h * w / max_points) * 0.5)) # Reduce step size for more detail
# Create mesh grid for camera coordinates
y_coords, x_coords = np.mgrid[0:h:step, 0:w:step]
# Convert to camera coordinates (normalized by focal length)
x_cam = (x_coords - w / 2) / focal_length_x
y_cam = (y_coords - h / 2) / focal_length_y
# Get depth values
depth_values = depth_map[::step, ::step]
# Calculate 3D points: (x_cam * depth, y_cam * depth, depth)
x_3d = x_cam * depth_values
y_3d = y_cam * depth_values
z_3d = depth_values
# Flatten arrays
points = np.stack([x_3d.flatten(), y_3d.flatten(), z_3d.flatten()], axis=1)
# Get corresponding image colors
image_colors = image[::step, ::step, :]
colors = image_colors.reshape(-1, 3) / 255.0
# Create Open3D point cloud
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
pcd.colors = o3d.utility.Vector3dVector(colors)
return pcd
def reconstruct_surface_mesh_from_point_cloud(pcd):
"""Convert point cloud to a mesh using Poisson reconstruction with very high detail."""
# Estimate and orient normals with high precision
pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.005, max_nn=50))
pcd.orient_normals_consistent_tangent_plane(k=50)
# Create surface mesh with maximum detail (depth=12 for very high resolution)
mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, depth=12)
# Return mesh without filtering low-density vertices
return mesh
def create_enhanced_3d_visualization(image, depth_map, max_points=10000):
"""Create an enhanced 3D visualization using proper camera projection"""
h, w = depth_map.shape
# Downsample to avoid too many points for performance
step = max(1, int(np.sqrt(h * w / max_points)))
# Create mesh grid for camera coordinates
y_coords, x_coords = np.mgrid[0:h:step, 0:w:step]
# Convert to camera coordinates (normalized by focal length)
focal_length = 470.4 # Default focal length
x_cam = (x_coords - w / 2) / focal_length
y_cam = (y_coords - h / 2) / focal_length
# Get depth values
depth_values = depth_map[::step, ::step]
# Calculate 3D points: (x_cam * depth, y_cam * depth, depth)
x_3d = x_cam * depth_values
y_3d = y_cam * depth_values
z_3d = depth_values
# Flatten arrays
x_flat = x_3d.flatten()
y_flat = y_3d.flatten()
z_flat = z_3d.flatten()
# Get corresponding image colors
image_colors = image[::step, ::step, :]
colors_flat = image_colors.reshape(-1, 3)
# Create 3D scatter plot with proper camera projection
fig = go.Figure(data=[go.Scatter3d(
x=x_flat,
y=y_flat,
z=z_flat,
mode='markers',
marker=dict(
size=1.5,
color=colors_flat,
opacity=0.9
),
hovertemplate='<b>3D Position:</b> (%{x:.3f}, %{y:.3f}, %{z:.3f})<br>' +
'<b>Depth:</b> %{z:.2f}<br>' +
'<extra></extra>'
)])
fig.update_layout(
title="3D Point Cloud Visualization (Camera Projection)",
scene=dict(
xaxis_title="X (meters)",
yaxis_title="Y (meters)",
zaxis_title="Z (meters)",
camera=dict(
eye=dict(x=2.0, y=2.0, z=2.0),
center=dict(x=0, y=0, z=0),
up=dict(x=0, y=0, z=1)
),
aspectmode='data'
),
width=700,
height=600
)
return fig
def on_depth_submit(image, num_points, focal_x, focal_y):
original_image = image.copy()
h, w = image.shape[:2]
# Predict depth using the model
depth = predict_depth(image[:, :, ::-1]) # RGB to BGR if needed
# Save raw 16-bit depth
raw_depth = Image.fromarray(depth.astype('uint16'))
tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
raw_depth.save(tmp_raw_depth.name)
# Normalize and convert to grayscale for display
norm_depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
norm_depth = norm_depth.astype(np.uint8)
colored_depth = (matplotlib.colormaps.get_cmap('Spectral_r')(norm_depth)[:, :, :3] * 255).astype(np.uint8)
gray_depth = Image.fromarray(norm_depth)
tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
gray_depth.save(tmp_gray_depth.name)
# Create point cloud
pcd = create_point_cloud(original_image, norm_depth, focal_x, focal_y, max_points=num_points)
# Reconstruct mesh from point cloud
mesh = reconstruct_surface_mesh_from_point_cloud(pcd)
# Save mesh with faces as .ply
tmp_pointcloud = tempfile.NamedTemporaryFile(suffix='.ply', delete=False)
o3d.io.write_triangle_mesh(tmp_pointcloud.name, mesh)
# Create enhanced 3D scatter plot visualization
depth_3d = create_enhanced_3d_visualization(original_image, norm_depth, max_points=num_points)
return [(original_image, colored_depth), tmp_gray_depth.name, tmp_raw_depth.name, tmp_pointcloud.name, depth_3d]
# --- Actual Wound Segmentation Functions ---
def create_automatic_wound_mask(image, method='deep_learning'):
"""
Automatically generate wound mask from image using the actual deep learning model
Args:
image: Input image (numpy array)
method: Segmentation method (currently only 'deep_learning' supported)
Returns:
mask: Binary wound mask
"""
if image is None:
return None
# Use the actual deep learning model for segmentation
if method == 'deep_learning':
mask, _ = segmentation_model.segment_wound(image)
return mask
else:
# Fallback to deep learning if method not recognized
mask, _ = segmentation_model.segment_wound(image)
return mask
def post_process_wound_mask(mask, min_area=100):
"""Post-process the wound mask to remove noise and small objects"""
if mask is None:
return None
# Convert to binary if needed
if mask.dtype != np.uint8:
mask = mask.astype(np.uint8)
# Apply morphological operations to clean up
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10, 10))
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
# Remove small objects using OpenCV
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
mask_clean = np.zeros_like(mask)
for contour in contours:
area = cv2.contourArea(contour)
if area >= min_area:
cv2.fillPoly(mask_clean, [contour], 255)
# Fill holes
mask_clean = cv2.morphologyEx(mask_clean, cv2.MORPH_CLOSE, kernel)
return mask_clean
def analyze_wound_severity_auto(image, depth_map, pixel_spacing_mm=0.5, segmentation_method='deep_learning'):
"""Analyze wound severity with automatic mask generation using actual segmentation model"""
if image is None or depth_map is None:
return "β Please provide both image and depth map."
# Generate automatic wound mask using the actual model
auto_mask = create_automatic_wound_mask(image, method=segmentation_method)
if auto_mask is None:
return "β Failed to generate automatic wound mask. Please check if the segmentation model is loaded."
# Post-process the mask
processed_mask = post_process_wound_mask(auto_mask, min_area=500)
if processed_mask is None or np.sum(processed_mask > 0) == 0:
return "β No wound region detected by the segmentation model. Try uploading a different image or use manual mask."
# Analyze severity using the automatic mask
return analyze_wound_severity(image, depth_map, processed_mask, pixel_spacing_mm)
# --- Main Gradio Interface ---
with gr.Blocks(css=css, title="Wound Analysis System") as demo:
gr.HTML("<h1>Wound Analysis System</h1>")
#gr.Markdown("### Complete workflow: Classification β Depth Estimation β Wound Severity Analysis")
# Shared states
shared_image = gr.State()
shared_depth_map = gr.State()
with gr.Tabs():
# Tab 1: Wound Classification
with gr.Tab("1. π Wound Classification & Initial Analysis"):
gr.Markdown("### Step 1: Classify wound type and get initial AI analysis")
#gr.Markdown("Upload an image to identify the wound type and receive detailed analysis from our Vision AI.")
with gr.Row():
# Left Column - Image Upload
with gr.Column(scale=1):
gr.HTML('<h2 style="text-align: left; color: #d97706; margin-top: 0; font-weight: bold; font-size: 1.8rem;">Upload Wound Image</h2>')
classification_image_input = gr.Image(
label="",
type="pil",
height=400
)
# Place Clear and Analyse buttons side by side
with gr.Row():
classify_clear_btn = gr.Button(
"Clear",
variant="secondary",
size="lg",
scale=1
)
analyse_btn = gr.Button(
"Analyse",
variant="primary",
size="lg",
scale=1
)
# Right Column - Classification Results
with gr.Column(scale=1):
gr.HTML('<h2 style="text-align: left; color: #d97706; margin-top: 0; font-weight: bold; font-size: 1.8rem;">Classification Results</h2>')
classification_output = gr.Label(
label="",
num_top_classes=5,
show_label=False
)
# Second Row - Full Width AI Analysis
with gr.Row():
with gr.Column(scale=1):
gr.HTML('<h2 style="text-align: left; color: #d97706; margin-top: 2rem; margin-bottom: 1rem; font-weight: bold; font-size: 1.8rem;">Wound Visual Analysis</h2>')
gemini_output = gr.HTML(
value="""
<div style="
border-radius: 12px;
padding: 20px;
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
font-family: Arial, sans-serif;
min-height: 200px;
display: flex;
align-items: center;
justify-content: center;
color: white;
width: 100%;
border-left: 4px solid #d97706;
font-weight: bold;
">
Upload an image to get AI-powered wound analysis
</div>
"""
)
# Event handlers for classification tab
classify_clear_btn.click(
fn=lambda: (None, None, """
<div style="
border-radius: 12px;
padding: 20px;
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
font-family: Arial, sans-serif;
min-height: 200px;
display: flex;
align-items: center;
justify-content: center;
color: white;
width: 100%;
border-left: 4px solid #d97706;
font-weight: bold;
">
Upload an image to get AI-powered wound analysis
</div>
"""),
inputs=None,
outputs=[classification_image_input, classification_output, gemini_output]
)
# Only run classification on image upload
def classify_and_store(image):
result = classify_wound(image)
return result
classification_image_input.change(
fn=classify_and_store,
inputs=classification_image_input,
outputs=classification_output
)
# Store image in shared state for next tabs
def store_shared_image(image):
return image
classification_image_input.change(
fn=store_shared_image,
inputs=classification_image_input,
outputs=shared_image
)
# Run Gemini analysis only when Analyse button is clicked
def run_gemini_on_click(image, classification):
# Get top label
if isinstance(classification, dict) and classification:
top_label = max(classification.items(), key=lambda x: x[1])[0]
else:
top_label = "Unknown"
gemini_analysis = analyze_wound_with_gemini(image, top_label)
formatted_analysis = format_gemini_analysis(gemini_analysis)
return formatted_analysis
analyse_btn.click(
fn=run_gemini_on_click,
inputs=[classification_image_input, classification_output],
outputs=gemini_output
)
# Tab 2: Depth Estimation
with gr.Tab("2. π Depth Estimation & 3D Visualization"):
gr.Markdown("### Step 2: Generate depth maps and 3D visualizations")
gr.Markdown("This module creates depth maps and 3D point clouds from your images.")
with gr.Row():
load_from_classification_btn = gr.Button("π Load Image from Classification Tab", variant="secondary")
with gr.Row():
depth_input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output')
with gr.Row():
depth_submit = gr.Button(value="Compute Depth", variant="primary")
points_slider = gr.Slider(minimum=1000, maximum=10000, value=10000, step=1000,
label="Number of 3D points (upload image to update max)")
with gr.Row():
focal_length_x = gr.Slider(minimum=100, maximum=1000, value=470.4, step=10,
label="Focal Length X (pixels)")
focal_length_y = gr.Slider(minimum=100, maximum=1000, value=470.4, step=10,
label="Focal Length Y (pixels)")
# Reorganized layout: 2 columns - 3D visualization on left, file outputs stacked on right
with gr.Row():
with gr.Column(scale=2):
# 3D Visualization
gr.Markdown("### 3D Point Cloud Visualization")
gr.Markdown("Enhanced 3D visualization using proper camera projection. Hover over points to see 3D coordinates.")
depth_3d_plot = gr.Plot(label="3D Point Cloud")
with gr.Column(scale=1):
gr.Markdown("### Download Files")
gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download")
raw_file = gr.File(label="16-bit raw output (can be considered as disparity)", elem_id="download")
point_cloud_file = gr.File(label="Point Cloud (.ply)", elem_id="download")
# Tab 3: Wound Severity Analysis
with gr.Tab("3. π©Ή Wound Severity Analysis"):
gr.Markdown("### Step 3: Analyze wound severity using depth maps")
gr.Markdown("This module analyzes wound severity based on depth distribution and area measurements.")
with gr.Row():
# Load depth map from previous tab
load_depth_btn = gr.Button("π Load Depth Map from Tab 2", variant="secondary")
with gr.Row():
severity_input_image = gr.Image(label="Original Image", type='numpy')
severity_depth_map = gr.Image(label="Depth Map (from Tab 2)", type='numpy')
with gr.Row():
wound_mask_input = gr.Image(label="Auto-Generated Wound Mask", type='numpy')
with gr.Row():
severity_output = gr.HTML(
label="π€ AI-Powered Medical Assessment",
value="""
<div style='padding: 30px; background-color: #1e1e1e; border-radius: 12px; box-shadow: 0 0 10px rgba(0,0,0,0.5); text-align: center;'>
<div style='font-size: 24px; font-weight: bold; color: #ff9800; margin-bottom: 15px;'>
π©Ή Wound Severity Analysis
</div>
<div style='font-size: 18px; color: #cccccc; margin-bottom: 20px;'>
β³ Waiting for Input...
</div>
<div style='color: #888888; font-size: 14px;'>
Please upload an image and depth map, then click "π€ Analyze Severity with Auto-Generated Mask" to begin AI-powered medical assessment.
</div>
</div>
"""
)
gr.Markdown("**Note:** The deep learning segmentation model will automatically generate a wound mask when you upload an image or load a depth map.")
with gr.Row():
auto_severity_button = gr.Button("π€ Analyze Severity with Auto-Generated Mask", variant="primary", size="lg")
pixel_spacing_slider = gr.Slider(minimum=0.1, maximum=2.0, value=0.5, step=0.1,
label="Pixel Spacing (mm/pixel)")
depth_calibration_slider = gr.Slider(minimum=5.0, maximum=30.0, value=15.0, step=1.0,
label="Depth Calibration (mm)",
info="Adjust based on expected maximum wound depth")
#gr.Markdown("**Pixel Spacing:** Adjust based on your camera calibration. Default is 0.5 mm/pixel.")
#gr.Markdown("**Depth Calibration:** Adjust the maximum expected wound depth to improve measurement accuracy. For shallow wounds use 5-10mm, for deep wounds use 15-30mm.")
#gr.Markdown("**Note:** When you load a depth map or upload an image, the segmentation model will automatically generate a wound mask.")
# Update slider when image is uploaded
depth_input_image.change(
fn=update_slider_on_image_upload,
inputs=[depth_input_image],
outputs=[points_slider]
)
# Modified depth submit function to store depth map
def on_depth_submit_with_state(image, num_points, focal_x, focal_y):
results = on_depth_submit(image, num_points, focal_x, focal_y)
# Extract depth map from results for severity analysis
depth_map = None
if image is not None:
depth = predict_depth(image[:, :, ::-1]) # RGB to BGR if needed
# Normalize depth for severity analysis
norm_depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth_map = norm_depth.astype(np.uint8)
return results + [depth_map]
depth_submit.click(on_depth_submit_with_state,
inputs=[depth_input_image, points_slider, focal_length_x, focal_length_y],
outputs=[depth_image_slider, gray_depth_file, raw_file, point_cloud_file, depth_3d_plot, shared_depth_map])
# Function to load image from classification to depth tab
def load_image_from_classification(shared_img):
if shared_img is None:
return None, "β No image available from classification tab. Please upload an image in Tab 1 first."
# Convert PIL image to numpy array for depth estimation
if hasattr(shared_img, 'convert'):
# It's a PIL image, convert to numpy
img_array = np.array(shared_img)
return img_array, "β
Image loaded from classification tab successfully!"
else:
# Already numpy array
return shared_img, "β
Image loaded from classification tab successfully!"
# Connect the load button
load_from_classification_btn.click(
fn=load_image_from_classification,
inputs=shared_image,
outputs=[depth_input_image, gr.HTML()]
)
# Load depth map to severity tab and auto-generate mask
def load_depth_to_severity(depth_map, original_image):
if depth_map is None:
return None, None, None, "β No depth map available. Please compute depth in Tab 2 first."
# Auto-generate wound mask using segmentation model
if original_image is not None:
auto_mask, _ = segmentation_model.segment_wound(original_image)
if auto_mask is not None:
# Post-process the mask
processed_mask = post_process_wound_mask(auto_mask, min_area=500)
if processed_mask is not None and np.sum(processed_mask > 0) > 0:
return depth_map, original_image, processed_mask, "β
Depth map loaded and wound mask auto-generated!"
else:
return depth_map, original_image, None, "β
Depth map loaded but no wound detected. Try uploading a different image."
else:
return depth_map, original_image, None, "β
Depth map loaded but segmentation failed. Try uploading a different image."
else:
return depth_map, original_image, None, "β
Depth map loaded successfully!"
load_depth_btn.click(
fn=load_depth_to_severity,
inputs=[shared_depth_map, depth_input_image],
outputs=[severity_depth_map, severity_input_image, wound_mask_input, gr.HTML()]
)
# Loading state function
def show_loading_state():
return """
<div style='padding: 30px; background-color: #1e1e1e; border-radius: 12px; box-shadow: 0 0 10px rgba(0,0,0,0.5); text-align: center;'>
<div style='font-size: 24px; font-weight: bold; color: #ff9800; margin-bottom: 15px;'>
π©Ή Wound Severity Analysis
</div>
<div style='font-size: 18px; color: #4CAF50; margin-bottom: 20px;'>
π AI Analysis in Progress...
</div>
<div style='color: #cccccc; font-size: 14px; margin-bottom: 15px;'>
β’ Generating wound mask with deep learning model<br>
β’ Computing depth measurements and statistics<br>
β’ Analyzing wound characteristics with Gemini AI<br>
β’ Preparing comprehensive medical assessment
</div>
<div style='display: inline-block; width: 30px; height: 30px; border: 3px solid #f3f3f3; border-top: 3px solid #4CAF50; border-radius: 50%; animation: spin 1s linear infinite;'></div>
<style>
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
</style>
</div>
"""
# Automatic severity analysis function
def run_auto_severity_analysis(image, depth_map, pixel_spacing, depth_calibration):
if depth_map is None:
return """
<div style='padding: 30px; background-color: #1e1e1e; border-radius: 12px; box-shadow: 0 0 10px rgba(0,0,0,0.5); text-align: center;'>
<div style='font-size: 24px; font-weight: bold; color: #f44336; margin-bottom: 15px;'>
β Error
</div>
<div style='font-size: 16px; color: #cccccc;'>
Please load depth map from Tab 1 first.
</div>
</div>
"""
# Generate automatic wound mask using the actual model
auto_mask = create_automatic_wound_mask(image, method='deep_learning')
if auto_mask is None:
return """
<div style='padding: 30px; background-color: #1e1e1e; border-radius: 12px; box-shadow: 0 0 10px rgba(0,0,0,0.5); text-align: center;'>
<div style='font-size: 24px; font-weight: bold; color: #f44336; margin-bottom: 15px;'>
β Error
</div>
<div style='font-size: 16px; color: #cccccc;'>
Failed to generate automatic wound mask. Please check if the segmentation model is loaded.
</div>
</div>
"""
# Post-process the mask with fixed minimum area
processed_mask = post_process_wound_mask(auto_mask, min_area=500)
if processed_mask is None or np.sum(processed_mask > 0) == 0:
return """
<div style='padding: 30px; background-color: #1e1e1e; border-radius: 12px; box-shadow: 0 0 10px rgba(0,0,0,0.5); text-align: center;'>
<div style='font-size: 24px; font-weight: bold; color: #ff9800; margin-bottom: 15px;'>
β οΈ No Wound Detected
</div>
<div style='font-size: 16px; color: #cccccc;'>
No wound region detected by the segmentation model. Try uploading a different image or use manual mask.
</div>
</div>
"""
# Analyze severity using the automatic mask
return analyze_wound_severity(image, depth_map, processed_mask, pixel_spacing, depth_calibration)
# Connect event handler with loading state
auto_severity_button.click(
fn=show_loading_state,
inputs=[],
outputs=[severity_output]
).then(
fn=run_auto_severity_analysis,
inputs=[severity_input_image, severity_depth_map, pixel_spacing_slider, depth_calibration_slider],
outputs=[severity_output]
)
# Auto-generate mask when image is uploaded
def auto_generate_mask_on_image_upload(image):
if image is None:
return None, "β No image uploaded."
# Generate automatic wound mask using segmentation model
auto_mask, _ = segmentation_model.segment_wound(image)
if auto_mask is not None:
# Post-process the mask
processed_mask = post_process_wound_mask(auto_mask, min_area=500)
if processed_mask is not None and np.sum(processed_mask > 0) > 0:
return processed_mask, "β
Wound mask auto-generated using deep learning model!"
else:
return None, "β
Image uploaded but no wound detected. Try uploading a different image."
else:
return None, "β
Image uploaded but segmentation failed. Try uploading a different image."
# Load shared image from classification tab
def load_shared_image(shared_img):
if shared_img is None:
return gr.Image(), "β No image available from classification tab"
# Convert PIL image to numpy array for depth estimation
if hasattr(shared_img, 'convert'):
# It's a PIL image, convert to numpy
img_array = np.array(shared_img)
return img_array, "β
Image loaded from classification tab"
else:
# Already numpy array
return shared_img, "β
Image loaded from classification tab"
# Auto-generate mask when image is uploaded to severity tab
severity_input_image.change(
fn=auto_generate_mask_on_image_upload,
inputs=[severity_input_image],
outputs=[wound_mask_input, gr.HTML()]
)
if __name__ == '__main__':
demo.queue().launch(
server_name="0.0.0.0",
server_port=7860,
share=True
) |