File size: 41,614 Bytes
911c613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import glob
import gradio as gr
import matplotlib
import numpy as np
from PIL import Image
import torch
import tempfile
from gradio_imageslider import ImageSlider
import plotly.graph_objects as go
import plotly.express as px
import open3d as o3d
from depth_anything_v2.dpt import DepthAnythingV2
import os
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image as keras_image
import base64
from io import BytesIO
import gdown
import spaces
import cv2

# Import actual segmentation model components
from models.deeplab import Deeplabv3, relu6, DepthwiseConv2D, BilinearUpsampling
from utils.learning.metrics import dice_coef, precision, recall
from utils.io.data import normalize

# Define path and file ID
checkpoint_dir = "checkpoints"
os.makedirs(checkpoint_dir, exist_ok=True)

model_file = os.path.join(checkpoint_dir, "depth_anything_v2_vitl.pth")
gdrive_url = "https://drive.google.com/uc?id=141Mhq2jonkUBcVBnNqNSeyIZYtH5l4K5"

# Download if not already present
if not os.path.exists(model_file):
    print("Downloading model from Google Drive...")
    gdown.download(gdrive_url, model_file, quiet=False)

# --- TensorFlow: Check GPU Availability ---
gpus = tf.config.list_physical_devices('GPU')
if gpus:
    print("TensorFlow is using GPU")
else:
    print("TensorFlow is using CPU")

# --- Load Wound Classification Model and Class Labels ---
wound_model = load_model("keras_model.h5")
with open("labels.txt", "r") as f:
    class_labels = [line.strip().split(maxsplit=1)[1] for line in f]

# --- Load Actual Wound Segmentation Model ---
class WoundSegmentationModel:
    def __init__(self):
        self.input_dim_x = 224
        self.input_dim_y = 224
        self.model = None
        self.load_model()
    
    def load_model(self):
        """Load the trained wound segmentation model"""
        try:
            # Try to load the most recent model
            weight_file_name = '2025-08-07_16-25-27.hdf5'
            model_path = f'./training_history/{weight_file_name}'
            
            self.model = load_model(model_path, 
                                  custom_objects={
                                      'recall': recall,
                                      'precision': precision,
                                      'dice_coef': dice_coef,
                                      'relu6': relu6,
                                      'DepthwiseConv2D': DepthwiseConv2D,
                                      'BilinearUpsampling': BilinearUpsampling
                                  })
            print(f"Segmentation model loaded successfully from {model_path}")
        except Exception as e:
            print(f"Error loading segmentation model: {e}")
            # Fallback to the older model
            try:
                weight_file_name = '2019-12-19 01%3A53%3A15.480800.hdf5'
                model_path = f'./training_history/{weight_file_name}'
                
                self.model = load_model(model_path, 
                                      custom_objects={
                                          'recall': recall,
                                          'precision': precision,
                                          'dice_coef': dice_coef,
                                          'relu6': relu6,
                                          'DepthwiseConv2D': DepthwiseConv2D,
                                          'BilinearUpsampling': BilinearUpsampling
                                      })
                print(f"Segmentation model loaded successfully from {model_path}")
            except Exception as e2:
                print(f"Error loading fallback segmentation model: {e2}")
                self.model = None
    
    def preprocess_image(self, image):
        """Preprocess the uploaded image for model input"""
        if image is None:
            return None
        
        # Convert to RGB if needed
        if len(image.shape) == 3 and image.shape[2] == 3:
            # Convert BGR to RGB if needed
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        
        # Resize to model input size
        image = cv2.resize(image, (self.input_dim_x, self.input_dim_y))
        
        # Normalize the image
        image = image.astype(np.float32) / 255.0
        
        # Add batch dimension
        image = np.expand_dims(image, axis=0)
        
        return image
    
    def postprocess_prediction(self, prediction):
        """Postprocess the model prediction"""
        # Remove batch dimension
        prediction = prediction[0]
        
        # Apply threshold to get binary mask
        threshold = 0.5
        binary_mask = (prediction > threshold).astype(np.uint8) * 255
        
        return binary_mask
    
    def segment_wound(self, input_image):
        """Main function to segment wound from uploaded image"""
        if self.model is None:
            return None, "Error: Segmentation model not loaded. Please check the model files."
        
        if input_image is None:
            return None, "Please upload an image."
        
        try:
            # Preprocess the image
            processed_image = self.preprocess_image(input_image)
            
            if processed_image is None:
                return None, "Error processing image."
            
            # Make prediction
            prediction = self.model.predict(processed_image, verbose=0)
            
            # Postprocess the prediction
            segmented_mask = self.postprocess_prediction(prediction)
            
            return segmented_mask, "Segmentation completed successfully!"
            
        except Exception as e:
            return None, f"Error during segmentation: {str(e)}"

# Initialize the segmentation model
segmentation_model = WoundSegmentationModel()

# --- PyTorch: Set Device and Load Depth Model ---
map_device = torch.device("cuda" if torch.cuda.is_available() and torch.cuda.device_count() > 0 else "cpu")
print(f"Using PyTorch device: {map_device}")

model_configs = {
    'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
    'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
    'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder = 'vitl'
depth_model = DepthAnythingV2(**model_configs[encoder])
state_dict = torch.load(
    f'checkpoints/depth_anything_v2_{encoder}.pth',
    map_location=map_device
)
depth_model.load_state_dict(state_dict)
depth_model = depth_model.to(map_device).eval()


# --- Custom CSS for unified dark theme ---
css = """
.gradio-container {
    font-family: 'Segoe UI', sans-serif;
    background-color: #121212;
    color: #ffffff;
    padding: 20px;
}
.gr-button {
    background-color: #2c3e50;
    color: white;
    border-radius: 10px;
}
.gr-button:hover {
    background-color: #34495e;
}
.gr-html, .gr-html div {
    white-space: normal !important;
    overflow: visible !important;
    text-overflow: unset !important;
    word-break: break-word !important;
}
#img-display-container {
    max-height: 100vh;
}
#img-display-input {
    max-height: 80vh;
}
#img-display-output {
    max-height: 80vh;
}
#download {
    height: 62px;
}
h1 {
    text-align: center;
    font-size: 3rem;
    font-weight: bold;
    margin: 2rem 0;
    color: #ffffff;
}
h2 {
    color: #ffffff;
    text-align: center;
    margin: 1rem 0;
}
.gr-tabs {
    background-color: #1e1e1e;
    border-radius: 10px;
    padding: 10px;
}
.gr-tab-nav {
    background-color: #2c3e50;
    border-radius: 8px;
}
.gr-tab-nav button {
    color: #ffffff !important;
}
.gr-tab-nav button.selected {
    background-color: #34495e !important;
}
"""

# --- Wound Classification Functions ---
def preprocess_input(img):
    img = img.resize((224, 224))
    arr = keras_image.img_to_array(img)
    arr = arr / 255.0
    return np.expand_dims(arr, axis=0)

def get_reasoning_from_gemini(img, prediction):
    try:
        # For now, return a simple explanation without Gemini API to avoid typing issues
        # In production, you would implement the proper Gemini API call here
        explanations = {
            "Abrasion": "This appears to be an abrasion wound, characterized by superficial damage to the skin surface. The wound shows typical signs of friction or scraping injury.",
            "Burn": "This wound exhibits characteristics consistent with a burn injury, showing tissue damage from heat, chemicals, or radiation exposure.",
            "Laceration": "This wound displays the irregular edges and tissue tearing typical of a laceration, likely caused by blunt force trauma.",
            "Puncture": "This wound shows a small, deep entry point characteristic of puncture wounds, often caused by sharp, pointed objects.",
            "Ulcer": "This wound exhibits the characteristics of an ulcer, showing tissue breakdown and potential underlying vascular or pressure issues."
        }

        return explanations.get(prediction, f"This wound has been classified as {prediction}. Please consult with a healthcare professional for detailed assessment.")

    except Exception as e:
        return f"(Reasoning unavailable: {str(e)})"
    
@spaces.GPU
def classify_wound_image(img):
    if img is None:
        return "<div style='color:#ff5252; font-size:18px;'>No image provided</div>", ""

    img_array = preprocess_input(img)
    predictions = wound_model.predict(img_array, verbose=0)[0]
    pred_idx = int(np.argmax(predictions))
    pred_class = class_labels[pred_idx]

    # Get reasoning from Gemini
    reasoning_text = get_reasoning_from_gemini(img, pred_class)

    # Prediction Card
    predicted_card = f"""
    <div style='padding: 20px; background-color: #1e1e1e; border-radius: 12px;
                box-shadow: 0 0 10px rgba(0,0,0,0.5);'>
        <div style='font-size: 22px; font-weight: bold; color: orange; margin-bottom: 10px;'>
            Predicted Wound Type
        </div>
        <div style='font-size: 26px; color: white;'>
            {pred_class}
        </div>
    </div>
    """

    # Reasoning Card
    reasoning_card = f"""
    <div style='padding: 20px; background-color: #1e1e1e; border-radius: 12px;
                box-shadow: 0 0 10px rgba(0,0,0,0.5);'>
        <div style='font-size: 22px; font-weight: bold; color: orange; margin-bottom: 10px;'>
            Reasoning
        </div>
        <div style='font-size: 16px; color: white; min-height: 80px;'>
            {reasoning_text}
        </div>
    </div>
    """

    return predicted_card, reasoning_card

# --- Wound Severity Estimation Functions ---
@spaces.GPU
def compute_depth_area_statistics(depth_map, mask, pixel_spacing_mm=0.5):
    """Compute area statistics for different depth regions"""
    pixel_area_cm2 = (pixel_spacing_mm / 10.0) ** 2

    # Extract only wound region
    wound_mask = (mask > 127)
    wound_depths = depth_map[wound_mask]
    total_area = np.sum(wound_mask) * pixel_area_cm2

    # Categorize depth regions
    shallow = wound_depths < 3
    moderate = (wound_depths >= 3) & (wound_depths < 6)
    deep = wound_depths >= 6

    shallow_area = np.sum(shallow) * pixel_area_cm2
    moderate_area = np.sum(moderate) * pixel_area_cm2
    deep_area = np.sum(deep) * pixel_area_cm2

    deep_ratio = deep_area / total_area if total_area > 0 else 0

    return {
        'total_area_cm2': total_area,
        'shallow_area_cm2': shallow_area,
        'moderate_area_cm2': moderate_area,
        'deep_area_cm2': deep_area,
        'deep_ratio': deep_ratio,
        'max_depth': np.max(wound_depths) if len(wound_depths) > 0 else 0
    }

def classify_wound_severity_by_area(depth_stats):
    """Classify wound severity based on area and depth distribution"""
    total = depth_stats['total_area_cm2']
    deep = depth_stats['deep_area_cm2']
    moderate = depth_stats['moderate_area_cm2']

    if total == 0:
        return "Unknown"

    # Severity classification rules
    if deep > 2 or (deep / total) > 0.3:
        return "Severe"
    elif moderate > 1.5 or (moderate / total) > 0.4:
        return "Moderate"
    else:
        return "Mild"

def analyze_wound_severity(image, depth_map, wound_mask, pixel_spacing_mm=0.5):
    """Analyze wound severity from depth map and wound mask"""
    if image is None or depth_map is None or wound_mask is None:
        return "❌ Please upload image, depth map, and wound mask."

    # Convert wound mask to grayscale if needed
    if len(wound_mask.shape) == 3:
        wound_mask = np.mean(wound_mask, axis=2)

    # Ensure depth map and mask have same dimensions
    if depth_map.shape[:2] != wound_mask.shape[:2]:
        # Resize mask to match depth map
        from PIL import Image
        mask_pil = Image.fromarray(wound_mask.astype(np.uint8))
        mask_pil = mask_pil.resize((depth_map.shape[1], depth_map.shape[0]))
        wound_mask = np.array(mask_pil)

    # Compute statistics
    stats = compute_depth_area_statistics(depth_map, wound_mask, pixel_spacing_mm)
    severity = classify_wound_severity_by_area(stats)

    # Create severity report with color coding
    severity_color = {
        "Mild": "#4CAF50",      # Green
        "Moderate": "#FF9800",   # Orange
        "Severe": "#F44336"      # Red
    }.get(severity, "#9E9E9E")   # Gray for unknown

    report = f"""
    <div style='padding: 20px; background-color: #1e1e1e; border-radius: 12px; box-shadow: 0 0 10px rgba(0,0,0,0.5);'>
        <div style='font-size: 24px; font-weight: bold; color: {severity_color}; margin-bottom: 15px;'>
            🩹 Wound Severity Analysis
        </div>

        <div style='display: grid; grid-template-columns: 1fr 1fr; gap: 15px; margin-bottom: 20px;'>
            <div style='background-color: #2c2c2c; padding: 15px; border-radius: 8px;'>
                <div style='font-size: 18px; font-weight: bold; color: #ffffff; margin-bottom: 10px;'>
                    πŸ“ Area Measurements
                </div>
                <div style='color: #cccccc; line-height: 1.6;'>
                    <div>🟒 <b>Total Area:</b> {stats['total_area_cm2']:.2f} cm²</div>
                    <div>🟩 <b>Shallow (0-3mm):</b> {stats['shallow_area_cm2']:.2f} cm²</div>
                    <div>🟨 <b>Moderate (3-6mm):</b> {stats['moderate_area_cm2']:.2f} cm²</div>
                    <div>πŸŸ₯ <b>Deep (>6mm):</b> {stats['deep_area_cm2']:.2f} cmΒ²</div>
                </div>
            </div>

            <div style='background-color: #2c2c2c; padding: 15px; border-radius: 8px;'>
                <div style='font-size: 18px; font-weight: bold; color: #ffffff; margin-bottom: 10px;'>
                    πŸ“Š Depth Analysis
                </div>
                <div style='color: #cccccc; line-height: 1.6;'>
                    <div>πŸ”₯ <b>Deep Coverage:</b> {stats['deep_ratio']*100:.1f}%</div>
                    <div>πŸ“ <b>Max Depth:</b> {stats['max_depth']:.1f} mm</div>
                    <div>⚑ <b>Pixel Spacing:</b> {pixel_spacing_mm} mm</div>
                </div>
            </div>
        </div>

        <div style='text-align: center; padding: 15px; background-color: #2c2c2c; border-radius: 8px; border-left: 4px solid {severity_color};'>
            <div style='font-size: 20px; font-weight: bold; color: {severity_color};'>
                🎯 Predicted Severity: {severity}
            </div>
            <div style='font-size: 14px; color: #cccccc; margin-top: 5px;'>
                {get_severity_description(severity)}
            </div>
        </div>
    </div>
    """

    return report

def get_severity_description(severity):
    """Get description for severity level"""
    descriptions = {
        "Mild": "Superficial wound with minimal tissue damage. Usually heals well with basic care.",
        "Moderate": "Moderate tissue involvement requiring careful monitoring and proper treatment.",
        "Severe": "Deep tissue damage requiring immediate medical attention and specialized care.",
        "Unknown": "Unable to determine severity due to insufficient data."
    }
    return descriptions.get(severity, "Severity assessment unavailable.")

def create_sample_wound_mask(image_shape, center=None, radius=50):
    """Create a sample circular wound mask for testing"""
    if center is None:
        center = (image_shape[1] // 2, image_shape[0] // 2)

    mask = np.zeros(image_shape[:2], dtype=np.uint8)
    y, x = np.ogrid[:image_shape[0], :image_shape[1]]

    # Create circular mask
    dist_from_center = np.sqrt((x - center[0])**2 + (y - center[1])**2)
    mask[dist_from_center <= radius] = 255

    return mask

def create_realistic_wound_mask(image_shape, method='elliptical'):
    """Create a more realistic wound mask with irregular shapes"""
    h, w = image_shape[:2]
    mask = np.zeros((h, w), dtype=np.uint8)

    if method == 'elliptical':
        # Create elliptical wound mask
        center = (w // 2, h // 2)
        radius_x = min(w, h) // 3
        radius_y = min(w, h) // 4

        y, x = np.ogrid[:h, :w]
        # Add some irregularity to make it more realistic
        ellipse = ((x - center[0])**2 / (radius_x**2) +
                   (y - center[1])**2 / (radius_y**2)) <= 1

        # Add some noise and irregularity
        noise = np.random.random((h, w)) > 0.8
        mask = (ellipse | noise).astype(np.uint8) * 255

    elif method == 'irregular':
        # Create irregular wound mask
        center = (w // 2, h // 2)
        radius = min(w, h) // 4

        y, x = np.ogrid[:h, :w]
        base_circle = np.sqrt((x - center[0])**2 + (y - center[1])**2) <= radius

        # Add irregular extensions
        extensions = np.zeros_like(base_circle)
        for i in range(3):
            angle = i * 2 * np.pi / 3
            ext_x = int(center[0] + radius * 0.8 * np.cos(angle))
            ext_y = int(center[1] + radius * 0.8 * np.sin(angle))
            ext_radius = radius // 3

            ext_circle = np.sqrt((x - ext_x)**2 + (y - ext_y)**2) <= ext_radius
            extensions = extensions | ext_circle

        mask = (base_circle | extensions).astype(np.uint8) * 255

    # Apply morphological operations to smooth the mask
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
    mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)

    return mask

# --- Depth Estimation Functions ---
@spaces.GPU
def predict_depth(image):
    return depth_model.infer_image(image)

def calculate_max_points(image):
    """Calculate maximum points based on image dimensions (3x pixel count)"""
    if image is None:
        return 10000  # Default value
    h, w = image.shape[:2]
    max_points = h * w * 3
    # Ensure minimum and reasonable maximum values
    return max(1000, min(max_points, 300000))

def update_slider_on_image_upload(image):
    """Update the points slider when an image is uploaded"""
    max_points = calculate_max_points(image)
    default_value = min(10000, max_points // 10)  # 10% of max points as default
    return gr.Slider(minimum=1000, maximum=max_points, value=default_value, step=1000,
                     label=f"Number of 3D points (max: {max_points:,})")

@spaces.GPU
def create_point_cloud(image, depth_map, focal_length_x=470.4, focal_length_y=470.4, max_points=30000):
    """Create a point cloud from depth map using camera intrinsics with high detail"""
    h, w = depth_map.shape

    # Use smaller step for higher detail (reduced downsampling)
    step = max(1, int(np.sqrt(h * w / max_points) * 0.5))  # Reduce step size for more detail

    # Create mesh grid for camera coordinates
    y_coords, x_coords = np.mgrid[0:h:step, 0:w:step]

    # Convert to camera coordinates (normalized by focal length)
    x_cam = (x_coords - w / 2) / focal_length_x
    y_cam = (y_coords - h / 2) / focal_length_y

    # Get depth values
    depth_values = depth_map[::step, ::step]

    # Calculate 3D points: (x_cam * depth, y_cam * depth, depth)
    x_3d = x_cam * depth_values
    y_3d = y_cam * depth_values
    z_3d = depth_values

    # Flatten arrays
    points = np.stack([x_3d.flatten(), y_3d.flatten(), z_3d.flatten()], axis=1)

    # Get corresponding image colors
    image_colors = image[::step, ::step, :]
    colors = image_colors.reshape(-1, 3) / 255.0

    # Create Open3D point cloud
    pcd = o3d.geometry.PointCloud()
    pcd.points = o3d.utility.Vector3dVector(points)
    pcd.colors = o3d.utility.Vector3dVector(colors)

    return pcd

@spaces.GPU
def reconstruct_surface_mesh_from_point_cloud(pcd):
    """Convert point cloud to a mesh using Poisson reconstruction with very high detail."""
    # Estimate and orient normals with high precision
    pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.005, max_nn=50))
    pcd.orient_normals_consistent_tangent_plane(k=50)

    # Create surface mesh with maximum detail (depth=12 for very high resolution)
    mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, depth=12)

    # Return mesh without filtering low-density vertices
    return mesh

@spaces.GPU
def create_enhanced_3d_visualization(image, depth_map, max_points=10000):
    """Create an enhanced 3D visualization using proper camera projection"""
    h, w = depth_map.shape

    # Downsample to avoid too many points for performance
    step = max(1, int(np.sqrt(h * w / max_points)))

    # Create mesh grid for camera coordinates
    y_coords, x_coords = np.mgrid[0:h:step, 0:w:step]

    # Convert to camera coordinates (normalized by focal length)
    focal_length = 470.4  # Default focal length
    x_cam = (x_coords - w / 2) / focal_length
    y_cam = (y_coords - h / 2) / focal_length

    # Get depth values
    depth_values = depth_map[::step, ::step]

    # Calculate 3D points: (x_cam * depth, y_cam * depth, depth)
    x_3d = x_cam * depth_values
    y_3d = y_cam * depth_values
    z_3d = depth_values

    # Flatten arrays
    x_flat = x_3d.flatten()
    y_flat = y_3d.flatten()
    z_flat = z_3d.flatten()

    # Get corresponding image colors
    image_colors = image[::step, ::step, :]
    colors_flat = image_colors.reshape(-1, 3)

    # Create 3D scatter plot with proper camera projection
    fig = go.Figure(data=[go.Scatter3d(
        x=x_flat,
        y=y_flat,
        z=z_flat,
        mode='markers',
        marker=dict(
            size=1.5,
            color=colors_flat,
            opacity=0.9
        ),
        hovertemplate='<b>3D Position:</b> (%{x:.3f}, %{y:.3f}, %{z:.3f})<br>' +
                     '<b>Depth:</b> %{z:.2f}<br>' +
                     '<extra></extra>'
    )])

    fig.update_layout(
        title="3D Point Cloud Visualization (Camera Projection)",
        scene=dict(
            xaxis_title="X (meters)",
            yaxis_title="Y (meters)",
            zaxis_title="Z (meters)",
            camera=dict(
                eye=dict(x=2.0, y=2.0, z=2.0),
                center=dict(x=0, y=0, z=0),
                up=dict(x=0, y=0, z=1)
            ),
            aspectmode='data'
        ),
        width=700,
        height=600
    )

    return fig

def on_depth_submit(image, num_points, focal_x, focal_y):
    original_image = image.copy()

    h, w = image.shape[:2]

    # Predict depth using the model
    depth = predict_depth(image[:, :, ::-1])  # RGB to BGR if needed

    # Save raw 16-bit depth
    raw_depth = Image.fromarray(depth.astype('uint16'))
    tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
    raw_depth.save(tmp_raw_depth.name)

    # Normalize and convert to grayscale for display
    norm_depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
    norm_depth = norm_depth.astype(np.uint8)
    colored_depth = (matplotlib.colormaps.get_cmap('Spectral_r')(norm_depth)[:, :, :3] * 255).astype(np.uint8)

    gray_depth = Image.fromarray(norm_depth)
    tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
    gray_depth.save(tmp_gray_depth.name)

    # Create point cloud
    pcd = create_point_cloud(original_image, norm_depth, focal_x, focal_y, max_points=num_points)

    # Reconstruct mesh from point cloud
    mesh = reconstruct_surface_mesh_from_point_cloud(pcd)

    # Save mesh with faces as .ply
    tmp_pointcloud = tempfile.NamedTemporaryFile(suffix='.ply', delete=False)
    o3d.io.write_triangle_mesh(tmp_pointcloud.name, mesh)

    # Create enhanced 3D scatter plot visualization
    depth_3d = create_enhanced_3d_visualization(original_image, norm_depth, max_points=num_points)

    return [(original_image, colored_depth), tmp_gray_depth.name, tmp_raw_depth.name, tmp_pointcloud.name, depth_3d]

# --- Actual Wound Segmentation Functions ---
def create_automatic_wound_mask(image, method='deep_learning'):
    """
    Automatically generate wound mask from image using the actual deep learning model

    Args:
        image: Input image (numpy array)
        method: Segmentation method (currently only 'deep_learning' supported)

    Returns:
        mask: Binary wound mask
    """
    if image is None:
        return None

    # Use the actual deep learning model for segmentation
    if method == 'deep_learning':
        mask, _ = segmentation_model.segment_wound(image)
        return mask
    else:
        # Fallback to deep learning if method not recognized
        mask, _ = segmentation_model.segment_wound(image)
        return mask

def post_process_wound_mask(mask, min_area=100):
    """Post-process the wound mask to remove noise and small objects"""
    if mask is None:
        return None

    # Convert to binary if needed
    if mask.dtype != np.uint8:
        mask = mask.astype(np.uint8)

    # Apply morphological operations to clean up
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10, 10))
    mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
    mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)

    # Remove small objects using OpenCV
    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    mask_clean = np.zeros_like(mask)

    for contour in contours:
        area = cv2.contourArea(contour)
        if area >= min_area:
            cv2.fillPoly(mask_clean, [contour], 255)

    # Fill holes
    mask_clean = cv2.morphologyEx(mask_clean, cv2.MORPH_CLOSE, kernel)

    return mask_clean

def analyze_wound_severity_auto(image, depth_map, pixel_spacing_mm=0.5, segmentation_method='deep_learning'):
    """Analyze wound severity with automatic mask generation using actual segmentation model"""
    if image is None or depth_map is None:
        return "❌ Please provide both image and depth map."

    # Generate automatic wound mask using the actual model
    auto_mask = create_automatic_wound_mask(image, method=segmentation_method)

    if auto_mask is None:
        return "❌ Failed to generate automatic wound mask. Please check if the segmentation model is loaded."

    # Post-process the mask
    processed_mask = post_process_wound_mask(auto_mask, min_area=500)

    if processed_mask is None or np.sum(processed_mask > 0) == 0:
        return "❌ No wound region detected by the segmentation model. Try uploading a different image or use manual mask."

    # Analyze severity using the automatic mask
    return analyze_wound_severity(image, depth_map, processed_mask, pixel_spacing_mm)

# --- Main Gradio Interface ---
with gr.Blocks(css=css, title="Wound Analysis & Depth Estimation") as demo:
    gr.HTML("<h1>Wound Analysis & Depth Estimation System</h1>")
    gr.Markdown("### Comprehensive wound analysis with classification and 3D depth mapping capabilities")

    # Shared image state
    shared_image = gr.State()

    with gr.Tabs():
        # Tab 1: Wound Classification
        with gr.Tab("1. Wound Classification"):
            gr.Markdown("### Step 1: Upload and classify your wound image")
            gr.Markdown("This module analyzes wound images and provides classification with AI-powered reasoning.")

            with gr.Row():
                with gr.Column(scale=1):
                    wound_image_input = gr.Image(label="Upload Wound Image", type="pil", height=350)

                with gr.Column(scale=1):
                    wound_prediction_box = gr.HTML()
                    wound_reasoning_box = gr.HTML()

            # Button to pass image to depth estimation
            with gr.Row():
                pass_to_depth_btn = gr.Button("πŸ“Š Pass Image to Depth Analysis", variant="secondary", size="lg")
                pass_status = gr.HTML("")

            wound_image_input.change(fn=classify_wound_image, inputs=wound_image_input,
                                   outputs=[wound_prediction_box, wound_reasoning_box])

            # Store image when uploaded for classification
            wound_image_input.change(
                fn=lambda img: img,
                inputs=[wound_image_input],
                outputs=[shared_image]
            )

        # Tab 2: Depth Estimation
        with gr.Tab("2. Depth Estimation & 3D Visualization"):
            gr.Markdown("### Step 2: Generate depth maps and 3D visualizations")
            gr.Markdown("This module creates depth maps and 3D point clouds from your images.")

            with gr.Row():
                depth_input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
                depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output')

            with gr.Row():
                depth_submit = gr.Button(value="Compute Depth", variant="primary")
                load_shared_btn = gr.Button("πŸ”„ Load Image from Classification", variant="secondary")
                points_slider = gr.Slider(minimum=1000, maximum=10000, value=10000, step=1000,
                                         label="Number of 3D points (upload image to update max)")

            with gr.Row():
                focal_length_x = gr.Slider(minimum=100, maximum=1000, value=470.4, step=10,
                                          label="Focal Length X (pixels)")
                focal_length_y = gr.Slider(minimum=100, maximum=1000, value=470.4, step=10,
                                          label="Focal Length Y (pixels)")

            with gr.Row():
                gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download")
                raw_file = gr.File(label="16-bit raw output (can be considered as disparity)", elem_id="download")
                point_cloud_file = gr.File(label="Point Cloud (.ply)", elem_id="download")

            # 3D Visualization
            gr.Markdown("### 3D Point Cloud Visualization")
            gr.Markdown("Enhanced 3D visualization using proper camera projection. Hover over points to see 3D coordinates.")
            depth_3d_plot = gr.Plot(label="3D Point Cloud")

            # Store depth map for severity analysis
            depth_map_state = gr.State()

        # Tab 3: Wound Severity Analysis
        with gr.Tab("3. 🩹 Wound Severity Analysis"):
            gr.Markdown("### Step 3: Analyze wound severity using depth maps")
            gr.Markdown("This module analyzes wound severity based on depth distribution and area measurements.")

            with gr.Row():
                severity_input_image = gr.Image(label="Original Image", type='numpy')
                severity_depth_map = gr.Image(label="Depth Map (from Tab 2)", type='numpy')

            with gr.Row():
                wound_mask_input = gr.Image(label="Auto-Generated Wound Mask", type='numpy')
                severity_output = gr.HTML(label="Severity Analysis Report")

            gr.Markdown("**Note:** The deep learning segmentation model will automatically generate a wound mask when you upload an image or load a depth map.")

            with gr.Row():
                auto_severity_button = gr.Button("πŸ€– Analyze Severity with Auto-Generated Mask", variant="primary", size="lg")
                manual_severity_button = gr.Button("πŸ” Manual Mask Analysis", variant="secondary", size="lg")
                pixel_spacing_slider = gr.Slider(minimum=0.1, maximum=2.0, value=0.5, step=0.1,
                                               label="Pixel Spacing (mm/pixel)")

            gr.Markdown("**Pixel Spacing:** Adjust based on your camera calibration. Default is 0.5 mm/pixel.")

            with gr.Row():
                # Load depth map from previous tab
                load_depth_btn = gr.Button("πŸ”„ Load Depth Map from Tab 2", variant="secondary")

            gr.Markdown("**Note:** When you load a depth map or upload an image, the segmentation model will automatically generate a wound mask.")

            # Update slider when image is uploaded
            depth_input_image.change(
                fn=update_slider_on_image_upload,
                inputs=[depth_input_image],
                outputs=[points_slider]
            )

            # Modified depth submit function to store depth map
            def on_depth_submit_with_state(image, num_points, focal_x, focal_y):
                results = on_depth_submit(image, num_points, focal_x, focal_y)
                # Extract depth map from results for severity analysis
                depth_map = None
                if image is not None:
                    depth = predict_depth(image[:, :, ::-1])  # RGB to BGR if needed
                    # Normalize depth for severity analysis
                    norm_depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
                    depth_map = norm_depth.astype(np.uint8)
                return results + [depth_map]

            depth_submit.click(on_depth_submit_with_state,
                             inputs=[depth_input_image, points_slider, focal_length_x, focal_length_y],
                             outputs=[depth_image_slider, gray_depth_file, raw_file, point_cloud_file, depth_3d_plot, depth_map_state])

            # Load depth map to severity tab and auto-generate mask
            def load_depth_to_severity(depth_map, original_image):
                if depth_map is None:
                    return None, None, None, "❌ No depth map available. Please compute depth in Tab 2 first."
                
                # Auto-generate wound mask using segmentation model
                if original_image is not None:
                    auto_mask, _ = segmentation_model.segment_wound(original_image)
                    if auto_mask is not None:
                        # Post-process the mask
                        processed_mask = post_process_wound_mask(auto_mask, min_area=500)
                        if processed_mask is not None and np.sum(processed_mask > 0) > 0:
                            return depth_map, original_image, processed_mask, "βœ… Depth map loaded and wound mask auto-generated!"
                        else:
                            return depth_map, original_image, None, "βœ… Depth map loaded but no wound detected. Try uploading a different image."
                    else:
                        return depth_map, original_image, None, "βœ… Depth map loaded but segmentation failed. Try uploading a different image."
                else:
                    return depth_map, original_image, None, "βœ… Depth map loaded successfully!"

            load_depth_btn.click(
                fn=load_depth_to_severity,
                inputs=[depth_map_state, depth_input_image],
                outputs=[severity_depth_map, severity_input_image, wound_mask_input, gr.HTML()]
            )

            # Automatic severity analysis function
            def run_auto_severity_analysis(image, depth_map, pixel_spacing):
                if depth_map is None:
                    return "❌ Please load depth map from Tab 2 first."

                # Generate automatic wound mask using the actual model
                auto_mask = create_automatic_wound_mask(image, method='deep_learning')

                if auto_mask is None:
                    return "❌ Failed to generate automatic wound mask. Please check if the segmentation model is loaded."

                # Post-process the mask with fixed minimum area
                processed_mask = post_process_wound_mask(auto_mask, min_area=500)

                if processed_mask is None or np.sum(processed_mask > 0) == 0:
                    return "❌ No wound region detected by the segmentation model. Try uploading a different image or use manual mask."

                # Analyze severity using the automatic mask
                return analyze_wound_severity(image, depth_map, processed_mask, pixel_spacing)

            # Manual severity analysis function
            def run_manual_severity_analysis(image, depth_map, wound_mask, pixel_spacing):
                if depth_map is None:
                    return "❌ Please load depth map from Tab 2 first."
                if wound_mask is None:
                    return "❌ Please upload a wound mask (binary image where white pixels represent the wound area)."

                return analyze_wound_severity(image, depth_map, wound_mask, pixel_spacing)

            # Connect event handlers
            auto_severity_button.click(
                fn=run_auto_severity_analysis,
                inputs=[severity_input_image, severity_depth_map, pixel_spacing_slider],
                outputs=[severity_output]
            )

            manual_severity_button.click(
                fn=run_manual_severity_analysis,
                inputs=[severity_input_image, severity_depth_map, wound_mask_input, pixel_spacing_slider],
                outputs=[severity_output]
            )



            # Auto-generate mask when image is uploaded
            def auto_generate_mask_on_image_upload(image):
                if image is None:
                    return None, "❌ No image uploaded."
                
                # Generate automatic wound mask using segmentation model
                auto_mask, _ = segmentation_model.segment_wound(image)
                if auto_mask is not None:
                    # Post-process the mask
                    processed_mask = post_process_wound_mask(auto_mask, min_area=500)
                    if processed_mask is not None and np.sum(processed_mask > 0) > 0:
                        return processed_mask, "βœ… Wound mask auto-generated using deep learning model!"
                    else:
                        return None, "βœ… Image uploaded but no wound detected. Try uploading a different image."
                else:
                    return None, "βœ… Image uploaded but segmentation failed. Try uploading a different image."

            # Load shared image from classification tab
            def load_shared_image(shared_img):
                if shared_img is None:
                    return gr.Image(), "❌ No image available from classification tab"

                # Convert PIL image to numpy array for depth estimation
                if hasattr(shared_img, 'convert'):
                    # It's a PIL image, convert to numpy
                    img_array = np.array(shared_img)
                    return img_array, "βœ… Image loaded from classification tab"
                else:
                    # Already numpy array
                    return shared_img, "βœ… Image loaded from classification tab"

            # Auto-generate mask when image is uploaded to severity tab
            severity_input_image.change(
                fn=auto_generate_mask_on_image_upload,
                inputs=[severity_input_image],
                outputs=[wound_mask_input, gr.HTML()]
            )

            load_shared_btn.click(
                fn=load_shared_image,
                inputs=[shared_image],
                outputs=[depth_input_image, gr.HTML()]
            )

            # Pass image to depth tab function
            def pass_image_to_depth(img):
                if img is None:
                    return "❌ No image uploaded in classification tab"
                return "βœ… Image ready for depth analysis! Switch to tab 2 and click 'Load Image from Classification'"

            pass_to_depth_btn.click(
                fn=pass_image_to_depth,
                inputs=[shared_image],
                outputs=[pass_status]
            )

if __name__ == '__main__':
    demo.queue().launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True
    )