Spaces:
Running
Running
File size: 41,614 Bytes
911c613 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 |
import glob import gradio as gr import matplotlib import numpy as np from PIL import Image import torch import tempfile from gradio_imageslider import ImageSlider import plotly.graph_objects as go import plotly.express as px import open3d as o3d from depth_anything_v2.dpt import DepthAnythingV2 import os import tensorflow as tf from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image as keras_image import base64 from io import BytesIO import gdown import spaces import cv2 # Import actual segmentation model components from models.deeplab import Deeplabv3, relu6, DepthwiseConv2D, BilinearUpsampling from utils.learning.metrics import dice_coef, precision, recall from utils.io.data import normalize # Define path and file ID checkpoint_dir = "checkpoints" os.makedirs(checkpoint_dir, exist_ok=True) model_file = os.path.join(checkpoint_dir, "depth_anything_v2_vitl.pth") gdrive_url = "https://drive.google.com/uc?id=141Mhq2jonkUBcVBnNqNSeyIZYtH5l4K5" # Download if not already present if not os.path.exists(model_file): print("Downloading model from Google Drive...") gdown.download(gdrive_url, model_file, quiet=False) # --- TensorFlow: Check GPU Availability --- gpus = tf.config.list_physical_devices('GPU') if gpus: print("TensorFlow is using GPU") else: print("TensorFlow is using CPU") # --- Load Wound Classification Model and Class Labels --- wound_model = load_model("keras_model.h5") with open("labels.txt", "r") as f: class_labels = [line.strip().split(maxsplit=1)[1] for line in f] # --- Load Actual Wound Segmentation Model --- class WoundSegmentationModel: def __init__(self): self.input_dim_x = 224 self.input_dim_y = 224 self.model = None self.load_model() def load_model(self): """Load the trained wound segmentation model""" try: # Try to load the most recent model weight_file_name = '2025-08-07_16-25-27.hdf5' model_path = f'./training_history/{weight_file_name}' self.model = load_model(model_path, custom_objects={ 'recall': recall, 'precision': precision, 'dice_coef': dice_coef, 'relu6': relu6, 'DepthwiseConv2D': DepthwiseConv2D, 'BilinearUpsampling': BilinearUpsampling }) print(f"Segmentation model loaded successfully from {model_path}") except Exception as e: print(f"Error loading segmentation model: {e}") # Fallback to the older model try: weight_file_name = '2019-12-19 01%3A53%3A15.480800.hdf5' model_path = f'./training_history/{weight_file_name}' self.model = load_model(model_path, custom_objects={ 'recall': recall, 'precision': precision, 'dice_coef': dice_coef, 'relu6': relu6, 'DepthwiseConv2D': DepthwiseConv2D, 'BilinearUpsampling': BilinearUpsampling }) print(f"Segmentation model loaded successfully from {model_path}") except Exception as e2: print(f"Error loading fallback segmentation model: {e2}") self.model = None def preprocess_image(self, image): """Preprocess the uploaded image for model input""" if image is None: return None # Convert to RGB if needed if len(image.shape) == 3 and image.shape[2] == 3: # Convert BGR to RGB if needed image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Resize to model input size image = cv2.resize(image, (self.input_dim_x, self.input_dim_y)) # Normalize the image image = image.astype(np.float32) / 255.0 # Add batch dimension image = np.expand_dims(image, axis=0) return image def postprocess_prediction(self, prediction): """Postprocess the model prediction""" # Remove batch dimension prediction = prediction[0] # Apply threshold to get binary mask threshold = 0.5 binary_mask = (prediction > threshold).astype(np.uint8) * 255 return binary_mask def segment_wound(self, input_image): """Main function to segment wound from uploaded image""" if self.model is None: return None, "Error: Segmentation model not loaded. Please check the model files." if input_image is None: return None, "Please upload an image." try: # Preprocess the image processed_image = self.preprocess_image(input_image) if processed_image is None: return None, "Error processing image." # Make prediction prediction = self.model.predict(processed_image, verbose=0) # Postprocess the prediction segmented_mask = self.postprocess_prediction(prediction) return segmented_mask, "Segmentation completed successfully!" except Exception as e: return None, f"Error during segmentation: {str(e)}" # Initialize the segmentation model segmentation_model = WoundSegmentationModel() # --- PyTorch: Set Device and Load Depth Model --- map_device = torch.device("cuda" if torch.cuda.is_available() and torch.cuda.device_count() > 0 else "cpu") print(f"Using PyTorch device: {map_device}") model_configs = { 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} } encoder = 'vitl' depth_model = DepthAnythingV2(**model_configs[encoder]) state_dict = torch.load( f'checkpoints/depth_anything_v2_{encoder}.pth', map_location=map_device ) depth_model.load_state_dict(state_dict) depth_model = depth_model.to(map_device).eval() # --- Custom CSS for unified dark theme --- css = """ .gradio-container { font-family: 'Segoe UI', sans-serif; background-color: #121212; color: #ffffff; padding: 20px; } .gr-button { background-color: #2c3e50; color: white; border-radius: 10px; } .gr-button:hover { background-color: #34495e; } .gr-html, .gr-html div { white-space: normal !important; overflow: visible !important; text-overflow: unset !important; word-break: break-word !important; } #img-display-container { max-height: 100vh; } #img-display-input { max-height: 80vh; } #img-display-output { max-height: 80vh; } #download { height: 62px; } h1 { text-align: center; font-size: 3rem; font-weight: bold; margin: 2rem 0; color: #ffffff; } h2 { color: #ffffff; text-align: center; margin: 1rem 0; } .gr-tabs { background-color: #1e1e1e; border-radius: 10px; padding: 10px; } .gr-tab-nav { background-color: #2c3e50; border-radius: 8px; } .gr-tab-nav button { color: #ffffff !important; } .gr-tab-nav button.selected { background-color: #34495e !important; } """ # --- Wound Classification Functions --- def preprocess_input(img): img = img.resize((224, 224)) arr = keras_image.img_to_array(img) arr = arr / 255.0 return np.expand_dims(arr, axis=0) def get_reasoning_from_gemini(img, prediction): try: # For now, return a simple explanation without Gemini API to avoid typing issues # In production, you would implement the proper Gemini API call here explanations = { "Abrasion": "This appears to be an abrasion wound, characterized by superficial damage to the skin surface. The wound shows typical signs of friction or scraping injury.", "Burn": "This wound exhibits characteristics consistent with a burn injury, showing tissue damage from heat, chemicals, or radiation exposure.", "Laceration": "This wound displays the irregular edges and tissue tearing typical of a laceration, likely caused by blunt force trauma.", "Puncture": "This wound shows a small, deep entry point characteristic of puncture wounds, often caused by sharp, pointed objects.", "Ulcer": "This wound exhibits the characteristics of an ulcer, showing tissue breakdown and potential underlying vascular or pressure issues." } return explanations.get(prediction, f"This wound has been classified as {prediction}. Please consult with a healthcare professional for detailed assessment.") except Exception as e: return f"(Reasoning unavailable: {str(e)})" @spaces.GPU def classify_wound_image(img): if img is None: return "<div style='color:#ff5252; font-size:18px;'>No image provided</div>", "" img_array = preprocess_input(img) predictions = wound_model.predict(img_array, verbose=0)[0] pred_idx = int(np.argmax(predictions)) pred_class = class_labels[pred_idx] # Get reasoning from Gemini reasoning_text = get_reasoning_from_gemini(img, pred_class) # Prediction Card predicted_card = f""" <div style='padding: 20px; background-color: #1e1e1e; border-radius: 12px; box-shadow: 0 0 10px rgba(0,0,0,0.5);'> <div style='font-size: 22px; font-weight: bold; color: orange; margin-bottom: 10px;'> Predicted Wound Type </div> <div style='font-size: 26px; color: white;'> {pred_class} </div> </div> """ # Reasoning Card reasoning_card = f""" <div style='padding: 20px; background-color: #1e1e1e; border-radius: 12px; box-shadow: 0 0 10px rgba(0,0,0,0.5);'> <div style='font-size: 22px; font-weight: bold; color: orange; margin-bottom: 10px;'> Reasoning </div> <div style='font-size: 16px; color: white; min-height: 80px;'> {reasoning_text} </div> </div> """ return predicted_card, reasoning_card # --- Wound Severity Estimation Functions --- @spaces.GPU def compute_depth_area_statistics(depth_map, mask, pixel_spacing_mm=0.5): """Compute area statistics for different depth regions""" pixel_area_cm2 = (pixel_spacing_mm / 10.0) ** 2 # Extract only wound region wound_mask = (mask > 127) wound_depths = depth_map[wound_mask] total_area = np.sum(wound_mask) * pixel_area_cm2 # Categorize depth regions shallow = wound_depths < 3 moderate = (wound_depths >= 3) & (wound_depths < 6) deep = wound_depths >= 6 shallow_area = np.sum(shallow) * pixel_area_cm2 moderate_area = np.sum(moderate) * pixel_area_cm2 deep_area = np.sum(deep) * pixel_area_cm2 deep_ratio = deep_area / total_area if total_area > 0 else 0 return { 'total_area_cm2': total_area, 'shallow_area_cm2': shallow_area, 'moderate_area_cm2': moderate_area, 'deep_area_cm2': deep_area, 'deep_ratio': deep_ratio, 'max_depth': np.max(wound_depths) if len(wound_depths) > 0 else 0 } def classify_wound_severity_by_area(depth_stats): """Classify wound severity based on area and depth distribution""" total = depth_stats['total_area_cm2'] deep = depth_stats['deep_area_cm2'] moderate = depth_stats['moderate_area_cm2'] if total == 0: return "Unknown" # Severity classification rules if deep > 2 or (deep / total) > 0.3: return "Severe" elif moderate > 1.5 or (moderate / total) > 0.4: return "Moderate" else: return "Mild" def analyze_wound_severity(image, depth_map, wound_mask, pixel_spacing_mm=0.5): """Analyze wound severity from depth map and wound mask""" if image is None or depth_map is None or wound_mask is None: return "β Please upload image, depth map, and wound mask." # Convert wound mask to grayscale if needed if len(wound_mask.shape) == 3: wound_mask = np.mean(wound_mask, axis=2) # Ensure depth map and mask have same dimensions if depth_map.shape[:2] != wound_mask.shape[:2]: # Resize mask to match depth map from PIL import Image mask_pil = Image.fromarray(wound_mask.astype(np.uint8)) mask_pil = mask_pil.resize((depth_map.shape[1], depth_map.shape[0])) wound_mask = np.array(mask_pil) # Compute statistics stats = compute_depth_area_statistics(depth_map, wound_mask, pixel_spacing_mm) severity = classify_wound_severity_by_area(stats) # Create severity report with color coding severity_color = { "Mild": "#4CAF50", # Green "Moderate": "#FF9800", # Orange "Severe": "#F44336" # Red }.get(severity, "#9E9E9E") # Gray for unknown report = f""" <div style='padding: 20px; background-color: #1e1e1e; border-radius: 12px; box-shadow: 0 0 10px rgba(0,0,0,0.5);'> <div style='font-size: 24px; font-weight: bold; color: {severity_color}; margin-bottom: 15px;'> π©Ή Wound Severity Analysis </div> <div style='display: grid; grid-template-columns: 1fr 1fr; gap: 15px; margin-bottom: 20px;'> <div style='background-color: #2c2c2c; padding: 15px; border-radius: 8px;'> <div style='font-size: 18px; font-weight: bold; color: #ffffff; margin-bottom: 10px;'> π Area Measurements </div> <div style='color: #cccccc; line-height: 1.6;'> <div>π’ <b>Total Area:</b> {stats['total_area_cm2']:.2f} cmΒ²</div> <div>π© <b>Shallow (0-3mm):</b> {stats['shallow_area_cm2']:.2f} cmΒ²</div> <div>π¨ <b>Moderate (3-6mm):</b> {stats['moderate_area_cm2']:.2f} cmΒ²</div> <div>π₯ <b>Deep (>6mm):</b> {stats['deep_area_cm2']:.2f} cmΒ²</div> </div> </div> <div style='background-color: #2c2c2c; padding: 15px; border-radius: 8px;'> <div style='font-size: 18px; font-weight: bold; color: #ffffff; margin-bottom: 10px;'> π Depth Analysis </div> <div style='color: #cccccc; line-height: 1.6;'> <div>π₯ <b>Deep Coverage:</b> {stats['deep_ratio']*100:.1f}%</div> <div>π <b>Max Depth:</b> {stats['max_depth']:.1f} mm</div> <div>β‘ <b>Pixel Spacing:</b> {pixel_spacing_mm} mm</div> </div> </div> </div> <div style='text-align: center; padding: 15px; background-color: #2c2c2c; border-radius: 8px; border-left: 4px solid {severity_color};'> <div style='font-size: 20px; font-weight: bold; color: {severity_color};'> π― Predicted Severity: {severity} </div> <div style='font-size: 14px; color: #cccccc; margin-top: 5px;'> {get_severity_description(severity)} </div> </div> </div> """ return report def get_severity_description(severity): """Get description for severity level""" descriptions = { "Mild": "Superficial wound with minimal tissue damage. Usually heals well with basic care.", "Moderate": "Moderate tissue involvement requiring careful monitoring and proper treatment.", "Severe": "Deep tissue damage requiring immediate medical attention and specialized care.", "Unknown": "Unable to determine severity due to insufficient data." } return descriptions.get(severity, "Severity assessment unavailable.") def create_sample_wound_mask(image_shape, center=None, radius=50): """Create a sample circular wound mask for testing""" if center is None: center = (image_shape[1] // 2, image_shape[0] // 2) mask = np.zeros(image_shape[:2], dtype=np.uint8) y, x = np.ogrid[:image_shape[0], :image_shape[1]] # Create circular mask dist_from_center = np.sqrt((x - center[0])**2 + (y - center[1])**2) mask[dist_from_center <= radius] = 255 return mask def create_realistic_wound_mask(image_shape, method='elliptical'): """Create a more realistic wound mask with irregular shapes""" h, w = image_shape[:2] mask = np.zeros((h, w), dtype=np.uint8) if method == 'elliptical': # Create elliptical wound mask center = (w // 2, h // 2) radius_x = min(w, h) // 3 radius_y = min(w, h) // 4 y, x = np.ogrid[:h, :w] # Add some irregularity to make it more realistic ellipse = ((x - center[0])**2 / (radius_x**2) + (y - center[1])**2 / (radius_y**2)) <= 1 # Add some noise and irregularity noise = np.random.random((h, w)) > 0.8 mask = (ellipse | noise).astype(np.uint8) * 255 elif method == 'irregular': # Create irregular wound mask center = (w // 2, h // 2) radius = min(w, h) // 4 y, x = np.ogrid[:h, :w] base_circle = np.sqrt((x - center[0])**2 + (y - center[1])**2) <= radius # Add irregular extensions extensions = np.zeros_like(base_circle) for i in range(3): angle = i * 2 * np.pi / 3 ext_x = int(center[0] + radius * 0.8 * np.cos(angle)) ext_y = int(center[1] + radius * 0.8 * np.sin(angle)) ext_radius = radius // 3 ext_circle = np.sqrt((x - ext_x)**2 + (y - ext_y)**2) <= ext_radius extensions = extensions | ext_circle mask = (base_circle | extensions).astype(np.uint8) * 255 # Apply morphological operations to smooth the mask kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) return mask # --- Depth Estimation Functions --- @spaces.GPU def predict_depth(image): return depth_model.infer_image(image) def calculate_max_points(image): """Calculate maximum points based on image dimensions (3x pixel count)""" if image is None: return 10000 # Default value h, w = image.shape[:2] max_points = h * w * 3 # Ensure minimum and reasonable maximum values return max(1000, min(max_points, 300000)) def update_slider_on_image_upload(image): """Update the points slider when an image is uploaded""" max_points = calculate_max_points(image) default_value = min(10000, max_points // 10) # 10% of max points as default return gr.Slider(minimum=1000, maximum=max_points, value=default_value, step=1000, label=f"Number of 3D points (max: {max_points:,})") @spaces.GPU def create_point_cloud(image, depth_map, focal_length_x=470.4, focal_length_y=470.4, max_points=30000): """Create a point cloud from depth map using camera intrinsics with high detail""" h, w = depth_map.shape # Use smaller step for higher detail (reduced downsampling) step = max(1, int(np.sqrt(h * w / max_points) * 0.5)) # Reduce step size for more detail # Create mesh grid for camera coordinates y_coords, x_coords = np.mgrid[0:h:step, 0:w:step] # Convert to camera coordinates (normalized by focal length) x_cam = (x_coords - w / 2) / focal_length_x y_cam = (y_coords - h / 2) / focal_length_y # Get depth values depth_values = depth_map[::step, ::step] # Calculate 3D points: (x_cam * depth, y_cam * depth, depth) x_3d = x_cam * depth_values y_3d = y_cam * depth_values z_3d = depth_values # Flatten arrays points = np.stack([x_3d.flatten(), y_3d.flatten(), z_3d.flatten()], axis=1) # Get corresponding image colors image_colors = image[::step, ::step, :] colors = image_colors.reshape(-1, 3) / 255.0 # Create Open3D point cloud pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(points) pcd.colors = o3d.utility.Vector3dVector(colors) return pcd @spaces.GPU def reconstruct_surface_mesh_from_point_cloud(pcd): """Convert point cloud to a mesh using Poisson reconstruction with very high detail.""" # Estimate and orient normals with high precision pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.005, max_nn=50)) pcd.orient_normals_consistent_tangent_plane(k=50) # Create surface mesh with maximum detail (depth=12 for very high resolution) mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, depth=12) # Return mesh without filtering low-density vertices return mesh @spaces.GPU def create_enhanced_3d_visualization(image, depth_map, max_points=10000): """Create an enhanced 3D visualization using proper camera projection""" h, w = depth_map.shape # Downsample to avoid too many points for performance step = max(1, int(np.sqrt(h * w / max_points))) # Create mesh grid for camera coordinates y_coords, x_coords = np.mgrid[0:h:step, 0:w:step] # Convert to camera coordinates (normalized by focal length) focal_length = 470.4 # Default focal length x_cam = (x_coords - w / 2) / focal_length y_cam = (y_coords - h / 2) / focal_length # Get depth values depth_values = depth_map[::step, ::step] # Calculate 3D points: (x_cam * depth, y_cam * depth, depth) x_3d = x_cam * depth_values y_3d = y_cam * depth_values z_3d = depth_values # Flatten arrays x_flat = x_3d.flatten() y_flat = y_3d.flatten() z_flat = z_3d.flatten() # Get corresponding image colors image_colors = image[::step, ::step, :] colors_flat = image_colors.reshape(-1, 3) # Create 3D scatter plot with proper camera projection fig = go.Figure(data=[go.Scatter3d( x=x_flat, y=y_flat, z=z_flat, mode='markers', marker=dict( size=1.5, color=colors_flat, opacity=0.9 ), hovertemplate='<b>3D Position:</b> (%{x:.3f}, %{y:.3f}, %{z:.3f})<br>' + '<b>Depth:</b> %{z:.2f}<br>' + '<extra></extra>' )]) fig.update_layout( title="3D Point Cloud Visualization (Camera Projection)", scene=dict( xaxis_title="X (meters)", yaxis_title="Y (meters)", zaxis_title="Z (meters)", camera=dict( eye=dict(x=2.0, y=2.0, z=2.0), center=dict(x=0, y=0, z=0), up=dict(x=0, y=0, z=1) ), aspectmode='data' ), width=700, height=600 ) return fig def on_depth_submit(image, num_points, focal_x, focal_y): original_image = image.copy() h, w = image.shape[:2] # Predict depth using the model depth = predict_depth(image[:, :, ::-1]) # RGB to BGR if needed # Save raw 16-bit depth raw_depth = Image.fromarray(depth.astype('uint16')) tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False) raw_depth.save(tmp_raw_depth.name) # Normalize and convert to grayscale for display norm_depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 norm_depth = norm_depth.astype(np.uint8) colored_depth = (matplotlib.colormaps.get_cmap('Spectral_r')(norm_depth)[:, :, :3] * 255).astype(np.uint8) gray_depth = Image.fromarray(norm_depth) tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False) gray_depth.save(tmp_gray_depth.name) # Create point cloud pcd = create_point_cloud(original_image, norm_depth, focal_x, focal_y, max_points=num_points) # Reconstruct mesh from point cloud mesh = reconstruct_surface_mesh_from_point_cloud(pcd) # Save mesh with faces as .ply tmp_pointcloud = tempfile.NamedTemporaryFile(suffix='.ply', delete=False) o3d.io.write_triangle_mesh(tmp_pointcloud.name, mesh) # Create enhanced 3D scatter plot visualization depth_3d = create_enhanced_3d_visualization(original_image, norm_depth, max_points=num_points) return [(original_image, colored_depth), tmp_gray_depth.name, tmp_raw_depth.name, tmp_pointcloud.name, depth_3d] # --- Actual Wound Segmentation Functions --- def create_automatic_wound_mask(image, method='deep_learning'): """ Automatically generate wound mask from image using the actual deep learning model Args: image: Input image (numpy array) method: Segmentation method (currently only 'deep_learning' supported) Returns: mask: Binary wound mask """ if image is None: return None # Use the actual deep learning model for segmentation if method == 'deep_learning': mask, _ = segmentation_model.segment_wound(image) return mask else: # Fallback to deep learning if method not recognized mask, _ = segmentation_model.segment_wound(image) return mask def post_process_wound_mask(mask, min_area=100): """Post-process the wound mask to remove noise and small objects""" if mask is None: return None # Convert to binary if needed if mask.dtype != np.uint8: mask = mask.astype(np.uint8) # Apply morphological operations to clean up kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10, 10)) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) # Remove small objects using OpenCV contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) mask_clean = np.zeros_like(mask) for contour in contours: area = cv2.contourArea(contour) if area >= min_area: cv2.fillPoly(mask_clean, [contour], 255) # Fill holes mask_clean = cv2.morphologyEx(mask_clean, cv2.MORPH_CLOSE, kernel) return mask_clean def analyze_wound_severity_auto(image, depth_map, pixel_spacing_mm=0.5, segmentation_method='deep_learning'): """Analyze wound severity with automatic mask generation using actual segmentation model""" if image is None or depth_map is None: return "β Please provide both image and depth map." # Generate automatic wound mask using the actual model auto_mask = create_automatic_wound_mask(image, method=segmentation_method) if auto_mask is None: return "β Failed to generate automatic wound mask. Please check if the segmentation model is loaded." # Post-process the mask processed_mask = post_process_wound_mask(auto_mask, min_area=500) if processed_mask is None or np.sum(processed_mask > 0) == 0: return "β No wound region detected by the segmentation model. Try uploading a different image or use manual mask." # Analyze severity using the automatic mask return analyze_wound_severity(image, depth_map, processed_mask, pixel_spacing_mm) # --- Main Gradio Interface --- with gr.Blocks(css=css, title="Wound Analysis & Depth Estimation") as demo: gr.HTML("<h1>Wound Analysis & Depth Estimation System</h1>") gr.Markdown("### Comprehensive wound analysis with classification and 3D depth mapping capabilities") # Shared image state shared_image = gr.State() with gr.Tabs(): # Tab 1: Wound Classification with gr.Tab("1. Wound Classification"): gr.Markdown("### Step 1: Upload and classify your wound image") gr.Markdown("This module analyzes wound images and provides classification with AI-powered reasoning.") with gr.Row(): with gr.Column(scale=1): wound_image_input = gr.Image(label="Upload Wound Image", type="pil", height=350) with gr.Column(scale=1): wound_prediction_box = gr.HTML() wound_reasoning_box = gr.HTML() # Button to pass image to depth estimation with gr.Row(): pass_to_depth_btn = gr.Button("π Pass Image to Depth Analysis", variant="secondary", size="lg") pass_status = gr.HTML("") wound_image_input.change(fn=classify_wound_image, inputs=wound_image_input, outputs=[wound_prediction_box, wound_reasoning_box]) # Store image when uploaded for classification wound_image_input.change( fn=lambda img: img, inputs=[wound_image_input], outputs=[shared_image] ) # Tab 2: Depth Estimation with gr.Tab("2. Depth Estimation & 3D Visualization"): gr.Markdown("### Step 2: Generate depth maps and 3D visualizations") gr.Markdown("This module creates depth maps and 3D point clouds from your images.") with gr.Row(): depth_input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input') depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output') with gr.Row(): depth_submit = gr.Button(value="Compute Depth", variant="primary") load_shared_btn = gr.Button("π Load Image from Classification", variant="secondary") points_slider = gr.Slider(minimum=1000, maximum=10000, value=10000, step=1000, label="Number of 3D points (upload image to update max)") with gr.Row(): focal_length_x = gr.Slider(minimum=100, maximum=1000, value=470.4, step=10, label="Focal Length X (pixels)") focal_length_y = gr.Slider(minimum=100, maximum=1000, value=470.4, step=10, label="Focal Length Y (pixels)") with gr.Row(): gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download") raw_file = gr.File(label="16-bit raw output (can be considered as disparity)", elem_id="download") point_cloud_file = gr.File(label="Point Cloud (.ply)", elem_id="download") # 3D Visualization gr.Markdown("### 3D Point Cloud Visualization") gr.Markdown("Enhanced 3D visualization using proper camera projection. Hover over points to see 3D coordinates.") depth_3d_plot = gr.Plot(label="3D Point Cloud") # Store depth map for severity analysis depth_map_state = gr.State() # Tab 3: Wound Severity Analysis with gr.Tab("3. π©Ή Wound Severity Analysis"): gr.Markdown("### Step 3: Analyze wound severity using depth maps") gr.Markdown("This module analyzes wound severity based on depth distribution and area measurements.") with gr.Row(): severity_input_image = gr.Image(label="Original Image", type='numpy') severity_depth_map = gr.Image(label="Depth Map (from Tab 2)", type='numpy') with gr.Row(): wound_mask_input = gr.Image(label="Auto-Generated Wound Mask", type='numpy') severity_output = gr.HTML(label="Severity Analysis Report") gr.Markdown("**Note:** The deep learning segmentation model will automatically generate a wound mask when you upload an image or load a depth map.") with gr.Row(): auto_severity_button = gr.Button("π€ Analyze Severity with Auto-Generated Mask", variant="primary", size="lg") manual_severity_button = gr.Button("π Manual Mask Analysis", variant="secondary", size="lg") pixel_spacing_slider = gr.Slider(minimum=0.1, maximum=2.0, value=0.5, step=0.1, label="Pixel Spacing (mm/pixel)") gr.Markdown("**Pixel Spacing:** Adjust based on your camera calibration. Default is 0.5 mm/pixel.") with gr.Row(): # Load depth map from previous tab load_depth_btn = gr.Button("π Load Depth Map from Tab 2", variant="secondary") gr.Markdown("**Note:** When you load a depth map or upload an image, the segmentation model will automatically generate a wound mask.") # Update slider when image is uploaded depth_input_image.change( fn=update_slider_on_image_upload, inputs=[depth_input_image], outputs=[points_slider] ) # Modified depth submit function to store depth map def on_depth_submit_with_state(image, num_points, focal_x, focal_y): results = on_depth_submit(image, num_points, focal_x, focal_y) # Extract depth map from results for severity analysis depth_map = None if image is not None: depth = predict_depth(image[:, :, ::-1]) # RGB to BGR if needed # Normalize depth for severity analysis norm_depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 depth_map = norm_depth.astype(np.uint8) return results + [depth_map] depth_submit.click(on_depth_submit_with_state, inputs=[depth_input_image, points_slider, focal_length_x, focal_length_y], outputs=[depth_image_slider, gray_depth_file, raw_file, point_cloud_file, depth_3d_plot, depth_map_state]) # Load depth map to severity tab and auto-generate mask def load_depth_to_severity(depth_map, original_image): if depth_map is None: return None, None, None, "β No depth map available. Please compute depth in Tab 2 first." # Auto-generate wound mask using segmentation model if original_image is not None: auto_mask, _ = segmentation_model.segment_wound(original_image) if auto_mask is not None: # Post-process the mask processed_mask = post_process_wound_mask(auto_mask, min_area=500) if processed_mask is not None and np.sum(processed_mask > 0) > 0: return depth_map, original_image, processed_mask, "β Depth map loaded and wound mask auto-generated!" else: return depth_map, original_image, None, "β Depth map loaded but no wound detected. Try uploading a different image." else: return depth_map, original_image, None, "β Depth map loaded but segmentation failed. Try uploading a different image." else: return depth_map, original_image, None, "β Depth map loaded successfully!" load_depth_btn.click( fn=load_depth_to_severity, inputs=[depth_map_state, depth_input_image], outputs=[severity_depth_map, severity_input_image, wound_mask_input, gr.HTML()] ) # Automatic severity analysis function def run_auto_severity_analysis(image, depth_map, pixel_spacing): if depth_map is None: return "β Please load depth map from Tab 2 first." # Generate automatic wound mask using the actual model auto_mask = create_automatic_wound_mask(image, method='deep_learning') if auto_mask is None: return "β Failed to generate automatic wound mask. Please check if the segmentation model is loaded." # Post-process the mask with fixed minimum area processed_mask = post_process_wound_mask(auto_mask, min_area=500) if processed_mask is None or np.sum(processed_mask > 0) == 0: return "β No wound region detected by the segmentation model. Try uploading a different image or use manual mask." # Analyze severity using the automatic mask return analyze_wound_severity(image, depth_map, processed_mask, pixel_spacing) # Manual severity analysis function def run_manual_severity_analysis(image, depth_map, wound_mask, pixel_spacing): if depth_map is None: return "β Please load depth map from Tab 2 first." if wound_mask is None: return "β Please upload a wound mask (binary image where white pixels represent the wound area)." return analyze_wound_severity(image, depth_map, wound_mask, pixel_spacing) # Connect event handlers auto_severity_button.click( fn=run_auto_severity_analysis, inputs=[severity_input_image, severity_depth_map, pixel_spacing_slider], outputs=[severity_output] ) manual_severity_button.click( fn=run_manual_severity_analysis, inputs=[severity_input_image, severity_depth_map, wound_mask_input, pixel_spacing_slider], outputs=[severity_output] ) # Auto-generate mask when image is uploaded def auto_generate_mask_on_image_upload(image): if image is None: return None, "β No image uploaded." # Generate automatic wound mask using segmentation model auto_mask, _ = segmentation_model.segment_wound(image) if auto_mask is not None: # Post-process the mask processed_mask = post_process_wound_mask(auto_mask, min_area=500) if processed_mask is not None and np.sum(processed_mask > 0) > 0: return processed_mask, "β Wound mask auto-generated using deep learning model!" else: return None, "β Image uploaded but no wound detected. Try uploading a different image." else: return None, "β Image uploaded but segmentation failed. Try uploading a different image." # Load shared image from classification tab def load_shared_image(shared_img): if shared_img is None: return gr.Image(), "β No image available from classification tab" # Convert PIL image to numpy array for depth estimation if hasattr(shared_img, 'convert'): # It's a PIL image, convert to numpy img_array = np.array(shared_img) return img_array, "β Image loaded from classification tab" else: # Already numpy array return shared_img, "β Image loaded from classification tab" # Auto-generate mask when image is uploaded to severity tab severity_input_image.change( fn=auto_generate_mask_on_image_upload, inputs=[severity_input_image], outputs=[wound_mask_input, gr.HTML()] ) load_shared_btn.click( fn=load_shared_image, inputs=[shared_image], outputs=[depth_input_image, gr.HTML()] ) # Pass image to depth tab function def pass_image_to_depth(img): if img is None: return "β No image uploaded in classification tab" return "β Image ready for depth analysis! Switch to tab 2 and click 'Load Image from Classification'" pass_to_depth_btn.click( fn=pass_image_to_depth, inputs=[shared_image], outputs=[pass_status] ) if __name__ == '__main__': demo.queue().launch( server_name="0.0.0.0", server_port=7860, share=True ) |