File size: 13,678 Bytes
911c613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# ------------------------------------------------------------ #
#
# file : utils/learning/patch/extraction.py
# author : CM
# Function to extract patch from input dataset
#
# ------------------------------------------------------------ #
import sys
from random import randint
import numpy as np
from keras.utils import to_categorical

# ----- Patch Extraction -----
# -- Single Patch
# exctract a patch from an image
def extractPatch(d, patch_size_x, patch_size_y, patch_size_z, x, y, z):
    patch = d[x:x+patch_size_x,y:y+patch_size_y,z:z+patch_size_z]
    return patch

# extract a patch from an image. The patch can be out of the image (0 padding)
def extractPatchOut(d, patch_size_x, patch_size_y, patch_size_z, x_, y_, z_):
    patch = np.zeros((patch_size_x, patch_size_y, patch_size_z), dtype='float16')
    for x in range(0,patch_size_x):
        for y in range(0, patch_size_y):
            for z in range(0, patch_size_z):
                if(x+x_ >= 0 and x+x_ < d.shape[0] and y+y_ >= 0 and y+y_ < d.shape[1] and z+z_ >= 0 and z+z_ < d.shape[2]):
                    patch[x,y,z] = d[x+x_,y+y_,z+z_]
    return patch

# create random patch for an image
def generateRandomPatch(d, patch_size_x, patch_size_y, patch_size_z):
    x = randint(0, d.shape[0]-patch_size_x)
    y = randint(0, d.shape[1]-patch_size_y)
    z = randint(0, d.shape[2]-patch_size_z)
    data = extractPatch(d, patch_size_x, patch_size_y, patch_size_z, x, y, z)
    return data

# -- Multiple Patchs
# create random patchs for an image
def generateRandomPatchs(d, patch_size_x, patch_size_y, patch_size_z, patch_number):
    # max_patch_nb = (d.shape[0]-patch_size_x)*(d.shape[1]-patch_size_y)*(d.shape[2]-patch_size_z)
    data = np.empty((patch_number, patch_size_x, patch_size_y, patch_size_z), dtype='float16')

    for i in range(0,patch_number):
        data[i] = generateRandomPatch(d, patch_size_x, patch_size_y, patch_size_z)

    return data

# divide the full image into patchs
# todo : missing data if shape%patch_size is not 0
def generateFullPatchs(d, patch_size_x, patch_size_y, patch_size_z):
    patch_nb = int((d.shape[0]/patch_size_x)*(d.shape[1]/patch_size_y)*(d.shape[2]/patch_size_z))
    data = np.empty((patch_nb, patch_size_x, patch_size_y, patch_size_z), dtype='float16')
    i = 0
    for x in range(0,d.shape[0], patch_size_x):
        for y in range(0, d.shape[1], patch_size_y):
            for z in range(0,d.shape[2], patch_size_z):
                data[i] = extractPatch(d, patch_size_x, patch_size_y, patch_size_z, x, y, z)
                i = i+1

    return data

def generateFullPatchsPlus(d, patch_size_x, patch_size_y, patch_size_z, dx, dy, dz):
    patch_nb = int((d.shape[0]/dx)*(d.shape[1]/dy)*(d.shape[2]/dz))
    data = np.empty((patch_nb, patch_size_x, patch_size_y, patch_size_z), dtype='float16')
    i = 0
    for x in range(0,d.shape[0]-dx, dx):
        for y in range(0, d.shape[1]-dy, dy):
            for z in range(0,d.shape[2]-dz, dz):
                data[i] = extractPatch(d, patch_size_x, patch_size_y, patch_size_z, x, y, z)
                i = i+1

    return data

def noNeg(x):
    if(x>0):
        return x
    else:
        return 0

def generateFullPatchsCentered(d, patch_size_x, patch_size_y, patch_size_z):
    patch_nb = int(2*(d.shape[0]/patch_size_x)*2*(d.shape[1]/patch_size_y)*2*(d.shape[2]/patch_size_z))
    data = np.zeros((patch_nb, patch_size_x, patch_size_y, patch_size_z), dtype='float16')
    i = 0
    psx = int(patch_size_x/2)
    psy = int(patch_size_y/2)
    psz = int(patch_size_z/2)
    for x in range(-int(patch_size_x/4),d.shape[0]-3*int(patch_size_x/4)+1, psx):
        for y in range(-int(patch_size_y/4), d.shape[1]-3*int(patch_size_y/4)+1, psy):
            for z in range(-int(patch_size_z/4),d.shape[2]-3*int(patch_size_z/4)+1, psz):
                # patch = np.zeros((psx,psy,psz), dtype='float16')
                # patch = d[noNeg(x):noNeg(x)+patch_size_x,noNeg(y):noNeg(y)+patch_size_y,noNeg(z):noNeg(z)+patch_size_z]
                patch = extractPatchOut(d,patch_size_x, patch_size_y, patch_size_z, x, y, z)
                data[i] = patch
                i = i+1
    return data

# ----- Patch Extraction Generator -----
# Generator of random patchs of size 32*32*32
def generatorRandomPatchs(features, labels, batch_size, patch_size_x, patch_size_y, patch_size_z):
    batch_features = np.zeros((batch_size, patch_size_x, patch_size_y, patch_size_z, features.shape[4]), dtype='float16')
    batch_labels = np.zeros((batch_size, patch_size_x, patch_size_y, patch_size_z, labels.shape[4]), dtype='float16')

    while True:
        for i in range(batch_size):
            id = randint(0,features.shape[0]-1)
            x = randint(0, features.shape[1]-patch_size_x)
            y = randint(0, features.shape[2]-patch_size_y)
            z = randint(0, features.shape[3]-patch_size_z)

            batch_features[i]   = extractPatch(features[id], patch_size_x, patch_size_y, patch_size_z, x, y, z)
            batch_labels[i]     = extractPatch(labels[id], patch_size_x, patch_size_y, patch_size_z, x, y, z)

        yield batch_features, batch_labels

# Generator of random patchs of size 32*32*32 and 16*16*16
def generatorRandomPatchs3216(features, labels, batch_size):
    batch_features = np.zeros((batch_size, 32, 32, 32, features.shape[4]), dtype='float16')
    batch_labels = np.zeros((batch_size, 16, 16, 16, labels.shape[4]), dtype='float16')

    while True:
        for i in range(batch_size):
            id = randint(0,features.shape[0]-1)
            x = randint(0, features.shape[1]-32)
            y = randint(0, features.shape[2]-32)
            z = randint(0, features.shape[3]-32)

            batch_features[i]   = extractPatch(features[id], 32, 32, 32, x, y, z)
            batch_labels[i]     = extractPatch(labels[id], 16, 16, 16, x+16, y+16, z+16)

        yield batch_features, batch_labels

def generatorRandomPatchsLabelCentered(features, labels, batch_size, patch_size_x, patch_size_y, patch_size_z):
    patch_centered_size_x = int(patch_size_x/2)
    patch_centered_size_y = int(patch_size_y/2)
    patch_centered_size_z = int(patch_size_z/2)

    batch_features = np.zeros((batch_size, patch_size_x, patch_size_y, patch_size_z, features.shape[4]), dtype=features.dtype)
    batch_labels = np.zeros((batch_size, patch_centered_size_x, patch_centered_size_y, patch_centered_size_z,
                             labels.shape[4]), dtype=labels.dtype)

    while True:
        for i in range(batch_size):
            id = randint(0,features.shape[0]-1)
            x = randint(0, features.shape[1]-patch_size_x)
            y = randint(0, features.shape[2]-patch_size_y)
            z = randint(0, features.shape[3]-patch_size_z)

            batch_features[i]   = extractPatch(features[id], patch_size_x, patch_size_y, patch_size_z, x, y, z)
            batch_labels[i]     = extractPatch(labels[id], patch_centered_size_x, patch_centered_size_y, patch_centered_size_z,
                                               int(x+patch_size_x/4), int(y+patch_size_y/4), int(z+patch_size_z/4))

        yield batch_features, batch_labels

def generatorRandomPatchsDolz(features, labels, batch_size, patch_size_x, patch_size_y, patch_size_z):
    batch_features = np.zeros((batch_size, patch_size_x, patch_size_y, patch_size_z, features.shape[4]), dtype=features.dtype)
    batch_labels   = np.zeros((batch_size, int(patch_size_x / 2) * int(patch_size_y / 2) * int(patch_size_z / 2), 2), dtype=labels.dtype)

    while True:
        for i in range(batch_size):
            id = randint(0,features.shape[0]-1)
            x = randint(0, features.shape[1]-patch_size_x)
            y = randint(0, features.shape[2]-patch_size_y)
            z = randint(0, features.shape[3]-patch_size_z)

            batch_features[i] = extractPatch(features[id], patch_size_x, patch_size_y, patch_size_z, x, y, z)
            tmpPatch = extractPatch(labels[id], int(patch_size_x/2), int(patch_size_y/2), int(patch_size_z/2),
                                    int(x+patch_size_x/4), int(y+patch_size_y/4), int(z+patch_size_z/4))
            batch_labels[i] = to_categorical(tmpPatch.flatten(),2)
            """
            count = 0
            for x in range(0, tmpPatch.shape[0]):
                for y in range(0, tmpPatch.shape[1]):
                    for z in range(0, tmpPatch.shape[2]):
                        if(tmpPatch[x,y,z,0] == 1):
                            batch_labels[i,count,1] = 1
                        else:
                            batch_labels[i,count,0] = 1
                        count += 1
            """
        yield batch_features, batch_labels

from scipy.ndimage import zoom, rotate
# Generate random patchs with random linear transformation
# translation (random position) rotation, scale
# Preconditions :   patch_features_ % patch_labels_ = 0
#                   patch_features_ >= patch_labels_
# todo : scale
def generatorRandomPatchsLinear(features, labels, patch_features_x, patch_features_y, patch_features_z,
                                patch_labels_x, patch_labels_y, patch_labels_z):

    patch_features = np.zeros((1, patch_features_x, patch_features_y, patch_features_z, features.shape[4]), dtype=features.dtype)
    patch_labels   = np.zeros((1, patch_labels_x, patch_labels_y, patch_labels_z, labels.shape[4]), dtype=labels.dtype)

    if(patch_features_x % patch_labels_x != 0 or patch_features_y % patch_labels_y != 0 or patch_features_z % patch_labels_z != 0):
        sys.exit(0x00F0)

    if(patch_features_x < patch_labels_x or patch_features_y < patch_labels_y or patch_features_z < patch_labels_z):
        sys.exit(0x00F1)

    # middle of patch
    mx = int(patch_features_x/2)
    my = int(patch_features_y/2)
    mz = int(patch_features_z/2)
    # patch label size/2
    sx = int(patch_labels_x / 2)
    sy = int(patch_labels_y / 2)
    sz = int(patch_labels_z / 2)

    while True:
        id = randint(0, features.shape[0]-1)
        x  = randint(0, features.shape[1]-patch_features_x)
        y  = randint(0, features.shape[2]-patch_features_y)
        z  = randint(0, features.shape[3]-patch_features_z)

        # todo : check time consumtion and rotation directly on complete image
        r0 = randint(0, 360)-180
        r1 = randint(0, 360)-180
        r2 = randint(0, 360)-180
        rot_features = rotate(input=features[0], angle=r0, axes=(0, 1), reshape=False)
        rot_features = rotate(input=rot_features, angle=r1, axes=(1, 2), reshape=False)
        rot_features = rotate(input=rot_features, angle=r2, axes=(2, 0), reshape=False)
        rot_labels   = rotate(input=labels[0], angle=r0, axes=(0, 1), reshape=False)
        rot_labels   = rotate(input=rot_labels, angle=r1, axes=(1, 2), reshape=False)
        rot_labels   = rotate(input=rot_labels, angle=r2, axes=(2, 0), reshape=False)

        patch_features[0] = extractPatch(rot_features, patch_features_x, patch_features_y, patch_features_z, x, y, z)

        patch_labels[0]   = extractPatch(rot_labels, patch_labels_x, patch_labels_y, patch_labels_z,
                                      x + mx - sx, y + my - sy, z + mz - sz)

        yield patch_features, patch_labels

def randomPatchsAugmented(in_dataset, gd_dataset, patch_number, patch_in_size, patch_gd_size):
    patchs_in = np.zeros((patch_number, patch_in_size[0], patch_in_size[1], patch_in_size[2]), dtype=in_dataset.dtype)
    patchs_gd = np.zeros((patch_number, patch_gd_size[0], patch_gd_size[1], patch_gd_size[2]), dtype=gd_dataset.dtype)

    if(patch_in_size[0] % patch_gd_size[0] != 0 or patch_in_size[1] % patch_gd_size[1] != 0 or patch_in_size[2] % patch_gd_size[2] != 0):
        sys.exit("ERROR : randomPatchsAugmented patchs size error 1")

    if(patch_in_size[0] < patch_gd_size[0] or patch_in_size[1] < patch_gd_size[1] or patch_in_size[2] < patch_gd_size[2]):
        sys.exit("ERROR : randomPatchsAugmented patchs size error 2")

    # middle of patch
    mx = int(patch_in_size[0] / 2)
    my = int(patch_in_size[1] / 2)
    mz = int(patch_in_size[2] / 2)
    # patch label size/2
    sx = int(patch_gd_size[0] / 2)
    sy = int(patch_gd_size[1] / 2)
    sz = int(patch_gd_size[2] / 2)

    for count in range(patch_number):
        id = randint(0, in_dataset.shape[0]-1)
        x  = randint(0, in_dataset.shape[1]-patch_in_size[0])
        y  = randint(0, in_dataset.shape[2]-patch_in_size[1])
        z  = randint(0, in_dataset.shape[3]-patch_in_size[2])

        r0 = randint(0, 3)
        r1 = randint(0, 3)
        r2 = randint(0, 3)

        patchs_in[count] = extractPatch(in_dataset[id], patch_in_size[0], patch_in_size[1], patch_in_size[2], x, y, z)
        patchs_gd[count] = extractPatch(gd_dataset[id], patch_gd_size[0], patch_gd_size[1], patch_gd_size[2], x + mx - sx, y + my - sy, z + mz - sz)

        patchs_in[count] = np.rot90(patchs_in[count], r0, (0, 1))
        patchs_in[count] = np.rot90(patchs_in[count], r1, (1, 2))
        patchs_in[count] = np.rot90(patchs_in[count], r2, (2, 0))

        patchs_gd[count] = np.rot90(patchs_gd[count], r0, (0, 1))
        patchs_gd[count] = np.rot90(patchs_gd[count], r1, (1, 2))
        patchs_gd[count] = np.rot90(patchs_gd[count], r2, (2, 0))

    return patchs_in.reshape(patchs_in.shape[0], patchs_in.shape[1], patchs_in.shape[2], patchs_in.shape[3], 1),\
           patchs_gd.reshape(patchs_gd.shape[0], patchs_gd.shape[1], patchs_gd.shape[2], patchs_gd.shape[3], 1)

def generatorRandomPatchsAugmented(in_dataset, gd_dataset, patch_number, patch_in_size, patch_gd_size):
    while True:
        yield randomPatchsAugmented(in_dataset, gd_dataset, patch_number, patch_in_size, patch_gd_size)