Rakhi-2025's picture
Upload 95 files
911c613 verified
import glob
import gradio as gr
import matplotlib
import numpy as np
from PIL import Image
import torch
import tempfile
from gradio_imageslider import ImageSlider
import plotly.graph_objects as go
import plotly.express as px
import open3d as o3d
from depth_anything_v2.dpt import DepthAnythingV2
import os
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image as keras_image
import base64
from io import BytesIO
import gdown
import spaces
import cv2
# Import actual segmentation model components
from models.deeplab import Deeplabv3, relu6, DepthwiseConv2D, BilinearUpsampling
from utils.learning.metrics import dice_coef, precision, recall
from utils.io.data import normalize
# Define path and file ID
checkpoint_dir = "checkpoints"
os.makedirs(checkpoint_dir, exist_ok=True)
model_file = os.path.join(checkpoint_dir, "depth_anything_v2_vitl.pth")
gdrive_url = "https://drive.google.com/uc?id=141Mhq2jonkUBcVBnNqNSeyIZYtH5l4K5"
# Download if not already present
if not os.path.exists(model_file):
print("Downloading model from Google Drive...")
gdown.download(gdrive_url, model_file, quiet=False)
# --- TensorFlow: Check GPU Availability ---
gpus = tf.config.list_physical_devices('GPU')
if gpus:
print("TensorFlow is using GPU")
else:
print("TensorFlow is using CPU")
# --- Load Wound Classification Model and Class Labels ---
wound_model = load_model("keras_model.h5")
with open("labels.txt", "r") as f:
class_labels = [line.strip().split(maxsplit=1)[1] for line in f]
# --- Load Actual Wound Segmentation Model ---
class WoundSegmentationModel:
def __init__(self):
self.input_dim_x = 224
self.input_dim_y = 224
self.model = None
self.load_model()
def load_model(self):
"""Load the trained wound segmentation model"""
try:
# Try to load the most recent model
weight_file_name = '2025-08-07_16-25-27.hdf5'
model_path = f'./training_history/{weight_file_name}'
self.model = load_model(model_path,
custom_objects={
'recall': recall,
'precision': precision,
'dice_coef': dice_coef,
'relu6': relu6,
'DepthwiseConv2D': DepthwiseConv2D,
'BilinearUpsampling': BilinearUpsampling
})
print(f"Segmentation model loaded successfully from {model_path}")
except Exception as e:
print(f"Error loading segmentation model: {e}")
# Fallback to the older model
try:
weight_file_name = '2019-12-19 01%3A53%3A15.480800.hdf5'
model_path = f'./training_history/{weight_file_name}'
self.model = load_model(model_path,
custom_objects={
'recall': recall,
'precision': precision,
'dice_coef': dice_coef,
'relu6': relu6,
'DepthwiseConv2D': DepthwiseConv2D,
'BilinearUpsampling': BilinearUpsampling
})
print(f"Segmentation model loaded successfully from {model_path}")
except Exception as e2:
print(f"Error loading fallback segmentation model: {e2}")
self.model = None
def preprocess_image(self, image):
"""Preprocess the uploaded image for model input"""
if image is None:
return None
# Convert to RGB if needed
if len(image.shape) == 3 and image.shape[2] == 3:
# Convert BGR to RGB if needed
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Resize to model input size
image = cv2.resize(image, (self.input_dim_x, self.input_dim_y))
# Normalize the image
image = image.astype(np.float32) / 255.0
# Add batch dimension
image = np.expand_dims(image, axis=0)
return image
def postprocess_prediction(self, prediction):
"""Postprocess the model prediction"""
# Remove batch dimension
prediction = prediction[0]
# Apply threshold to get binary mask
threshold = 0.5
binary_mask = (prediction > threshold).astype(np.uint8) * 255
return binary_mask
def segment_wound(self, input_image):
"""Main function to segment wound from uploaded image"""
if self.model is None:
return None, "Error: Segmentation model not loaded. Please check the model files."
if input_image is None:
return None, "Please upload an image."
try:
# Preprocess the image
processed_image = self.preprocess_image(input_image)
if processed_image is None:
return None, "Error processing image."
# Make prediction
prediction = self.model.predict(processed_image, verbose=0)
# Postprocess the prediction
segmented_mask = self.postprocess_prediction(prediction)
return segmented_mask, "Segmentation completed successfully!"
except Exception as e:
return None, f"Error during segmentation: {str(e)}"
# Initialize the segmentation model
segmentation_model = WoundSegmentationModel()
# --- PyTorch: Set Device and Load Depth Model ---
map_device = torch.device("cuda" if torch.cuda.is_available() and torch.cuda.device_count() > 0 else "cpu")
print(f"Using PyTorch device: {map_device}")
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder = 'vitl'
depth_model = DepthAnythingV2(**model_configs[encoder])
state_dict = torch.load(
f'checkpoints/depth_anything_v2_{encoder}.pth',
map_location=map_device
)
depth_model.load_state_dict(state_dict)
depth_model = depth_model.to(map_device).eval()
# --- Custom CSS for unified dark theme ---
css = """
.gradio-container {
font-family: 'Segoe UI', sans-serif;
background-color: #121212;
color: #ffffff;
padding: 20px;
}
.gr-button {
background-color: #2c3e50;
color: white;
border-radius: 10px;
}
.gr-button:hover {
background-color: #34495e;
}
.gr-html, .gr-html div {
white-space: normal !important;
overflow: visible !important;
text-overflow: unset !important;
word-break: break-word !important;
}
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
#download {
height: 62px;
}
h1 {
text-align: center;
font-size: 3rem;
font-weight: bold;
margin: 2rem 0;
color: #ffffff;
}
h2 {
color: #ffffff;
text-align: center;
margin: 1rem 0;
}
.gr-tabs {
background-color: #1e1e1e;
border-radius: 10px;
padding: 10px;
}
.gr-tab-nav {
background-color: #2c3e50;
border-radius: 8px;
}
.gr-tab-nav button {
color: #ffffff !important;
}
.gr-tab-nav button.selected {
background-color: #34495e !important;
}
"""
# --- Wound Classification Functions ---
def preprocess_input(img):
img = img.resize((224, 224))
arr = keras_image.img_to_array(img)
arr = arr / 255.0
return np.expand_dims(arr, axis=0)
def get_reasoning_from_gemini(img, prediction):
try:
# For now, return a simple explanation without Gemini API to avoid typing issues
# In production, you would implement the proper Gemini API call here
explanations = {
"Abrasion": "This appears to be an abrasion wound, characterized by superficial damage to the skin surface. The wound shows typical signs of friction or scraping injury.",
"Burn": "This wound exhibits characteristics consistent with a burn injury, showing tissue damage from heat, chemicals, or radiation exposure.",
"Laceration": "This wound displays the irregular edges and tissue tearing typical of a laceration, likely caused by blunt force trauma.",
"Puncture": "This wound shows a small, deep entry point characteristic of puncture wounds, often caused by sharp, pointed objects.",
"Ulcer": "This wound exhibits the characteristics of an ulcer, showing tissue breakdown and potential underlying vascular or pressure issues."
}
return explanations.get(prediction, f"This wound has been classified as {prediction}. Please consult with a healthcare professional for detailed assessment.")
except Exception as e:
return f"(Reasoning unavailable: {str(e)})"
@spaces.GPU
def classify_wound_image(img):
if img is None:
return "<div style='color:#ff5252; font-size:18px;'>No image provided</div>", ""
img_array = preprocess_input(img)
predictions = wound_model.predict(img_array, verbose=0)[0]
pred_idx = int(np.argmax(predictions))
pred_class = class_labels[pred_idx]
# Get reasoning from Gemini
reasoning_text = get_reasoning_from_gemini(img, pred_class)
# Prediction Card
predicted_card = f"""
<div style='padding: 20px; background-color: #1e1e1e; border-radius: 12px;
box-shadow: 0 0 10px rgba(0,0,0,0.5);'>
<div style='font-size: 22px; font-weight: bold; color: orange; margin-bottom: 10px;'>
Predicted Wound Type
</div>
<div style='font-size: 26px; color: white;'>
{pred_class}
</div>
</div>
"""
# Reasoning Card
reasoning_card = f"""
<div style='padding: 20px; background-color: #1e1e1e; border-radius: 12px;
box-shadow: 0 0 10px rgba(0,0,0,0.5);'>
<div style='font-size: 22px; font-weight: bold; color: orange; margin-bottom: 10px;'>
Reasoning
</div>
<div style='font-size: 16px; color: white; min-height: 80px;'>
{reasoning_text}
</div>
</div>
"""
return predicted_card, reasoning_card
# --- Enhanced Wound Severity Estimation Functions ---
@spaces.GPU
def compute_enhanced_depth_statistics(depth_map, mask, pixel_spacing_mm=0.5, depth_calibration_mm=15.0):
"""
Enhanced depth analysis with proper calibration and medical standards
Based on wound depth classification standards:
- Superficial: 0-2mm (epidermis only)
- Partial thickness: 2-4mm (epidermis + partial dermis)
- Full thickness: 4-6mm (epidermis + full dermis)
- Deep: >6mm (involving subcutaneous tissue)
"""
# Convert pixel spacing to mm
pixel_spacing_mm = float(pixel_spacing_mm)
# Calculate pixel area in cmΒ²
pixel_area_cm2 = (pixel_spacing_mm / 10.0) ** 2
# Extract wound region (binary mask)
wound_mask = (mask > 127).astype(np.uint8)
# Apply morphological operations to clean the mask
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
wound_mask = cv2.morphologyEx(wound_mask, cv2.MORPH_CLOSE, kernel)
# Get depth values only for wound region
wound_depths = depth_map[wound_mask > 0]
if len(wound_depths) == 0:
return {
'total_area_cm2': 0,
'superficial_area_cm2': 0,
'partial_thickness_area_cm2': 0,
'full_thickness_area_cm2': 0,
'deep_area_cm2': 0,
'mean_depth_mm': 0,
'max_depth_mm': 0,
'depth_std_mm': 0,
'deep_ratio': 0,
'wound_volume_cm3': 0,
'depth_percentiles': {'25': 0, '50': 0, '75': 0}
}
# Calibrate depth map for more accurate measurements
calibrated_depth_map = calibrate_depth_map(depth_map, reference_depth_mm=depth_calibration_mm)
# Get calibrated depth values for wound region
wound_depths_mm = calibrated_depth_map[wound_mask > 0]
# Medical depth classification
superficial_mask = wound_depths_mm < 2.0
partial_thickness_mask = (wound_depths_mm >= 2.0) & (wound_depths_mm < 4.0)
full_thickness_mask = (wound_depths_mm >= 4.0) & (wound_depths_mm < 6.0)
deep_mask = wound_depths_mm >= 6.0
# Calculate areas
total_pixels = np.sum(wound_mask > 0)
total_area_cm2 = total_pixels * pixel_area_cm2
superficial_area_cm2 = np.sum(superficial_mask) * pixel_area_cm2
partial_thickness_area_cm2 = np.sum(partial_thickness_mask) * pixel_area_cm2
full_thickness_area_cm2 = np.sum(full_thickness_mask) * pixel_area_cm2
deep_area_cm2 = np.sum(deep_mask) * pixel_area_cm2
# Calculate depth statistics
mean_depth_mm = np.mean(wound_depths_mm)
max_depth_mm = np.max(wound_depths_mm)
depth_std_mm = np.std(wound_depths_mm)
# Calculate depth percentiles
depth_percentiles = {
'25': np.percentile(wound_depths_mm, 25),
'50': np.percentile(wound_depths_mm, 50),
'75': np.percentile(wound_depths_mm, 75)
}
# Calculate wound volume (approximate)
# Volume = area * average depth
wound_volume_cm3 = total_area_cm2 * (mean_depth_mm / 10.0)
# Deep tissue ratio
deep_ratio = deep_area_cm2 / total_area_cm2 if total_area_cm2 > 0 else 0
# Calculate analysis quality metrics
wound_pixel_count = len(wound_depths_mm)
analysis_quality = "High" if wound_pixel_count > 1000 else "Medium" if wound_pixel_count > 500 else "Low"
# Calculate depth consistency (lower std dev = more consistent)
depth_consistency = "High" if depth_std_mm < 2.0 else "Medium" if depth_std_mm < 4.0 else "Low"
return {
'total_area_cm2': total_area_cm2,
'superficial_area_cm2': superficial_area_cm2,
'partial_thickness_area_cm2': partial_thickness_area_cm2,
'full_thickness_area_cm2': full_thickness_area_cm2,
'deep_area_cm2': deep_area_cm2,
'mean_depth_mm': mean_depth_mm,
'max_depth_mm': max_depth_mm,
'depth_std_mm': depth_std_mm,
'deep_ratio': deep_ratio,
'wound_volume_cm3': wound_volume_cm3,
'depth_percentiles': depth_percentiles,
'analysis_quality': analysis_quality,
'depth_consistency': depth_consistency,
'wound_pixel_count': wound_pixel_count
}
def classify_wound_severity_by_enhanced_metrics(depth_stats):
"""
Enhanced wound severity classification based on medical standards
Uses multiple criteria: depth, area, volume, and tissue involvement
"""
if depth_stats['total_area_cm2'] == 0:
return "Unknown"
# Extract key metrics
total_area = depth_stats['total_area_cm2']
deep_area = depth_stats['deep_area_cm2']
full_thickness_area = depth_stats['full_thickness_area_cm2']
mean_depth = depth_stats['mean_depth_mm']
max_depth = depth_stats['max_depth_mm']
wound_volume = depth_stats['wound_volume_cm3']
deep_ratio = depth_stats['deep_ratio']
# Medical severity classification criteria
severity_score = 0
# Criterion 1: Maximum depth
if max_depth >= 10.0:
severity_score += 3 # Very severe
elif max_depth >= 6.0:
severity_score += 2 # Severe
elif max_depth >= 4.0:
severity_score += 1 # Moderate
# Criterion 2: Mean depth
if mean_depth >= 5.0:
severity_score += 2
elif mean_depth >= 3.0:
severity_score += 1
# Criterion 3: Deep tissue involvement ratio
if deep_ratio >= 0.5:
severity_score += 3 # More than 50% deep tissue
elif deep_ratio >= 0.25:
severity_score += 2 # 25-50% deep tissue
elif deep_ratio >= 0.1:
severity_score += 1 # 10-25% deep tissue
# Criterion 4: Total wound area
if total_area >= 10.0:
severity_score += 2 # Large wound (>10 cmΒ²)
elif total_area >= 5.0:
severity_score += 1 # Medium wound (5-10 cmΒ²)
# Criterion 5: Wound volume
if wound_volume >= 5.0:
severity_score += 2 # High volume
elif wound_volume >= 2.0:
severity_score += 1 # Medium volume
# Determine severity based on total score
if severity_score >= 8:
return "Very Severe"
elif severity_score >= 6:
return "Severe"
elif severity_score >= 4:
return "Moderate"
elif severity_score >= 2:
return "Mild"
else:
return "Superficial"
def analyze_wound_severity(image, depth_map, wound_mask, pixel_spacing_mm=0.5, depth_calibration_mm=15.0):
"""Enhanced wound severity analysis with medical-grade metrics"""
if image is None or depth_map is None or wound_mask is None:
return "❌ Please upload image, depth map, and wound mask."
# Convert wound mask to grayscale if needed
if len(wound_mask.shape) == 3:
wound_mask = np.mean(wound_mask, axis=2)
# Ensure depth map and mask have same dimensions
if depth_map.shape[:2] != wound_mask.shape[:2]:
# Resize mask to match depth map
from PIL import Image
mask_pil = Image.fromarray(wound_mask.astype(np.uint8))
mask_pil = mask_pil.resize((depth_map.shape[1], depth_map.shape[0]))
wound_mask = np.array(mask_pil)
# Compute enhanced statistics
stats = compute_enhanced_depth_statistics(depth_map, wound_mask, pixel_spacing_mm, depth_calibration_mm)
severity = classify_wound_severity_by_enhanced_metrics(stats)
# Enhanced severity color coding
severity_color = {
"Superficial": "#4CAF50", # Green
"Mild": "#8BC34A", # Light Green
"Moderate": "#FF9800", # Orange
"Severe": "#F44336", # Red
"Very Severe": "#9C27B0" # Purple
}.get(severity, "#9E9E9E") # Gray for unknown
# Create comprehensive medical report
report = f"""
<div style='padding: 20px; background-color: #1e1e1e; border-radius: 12px; box-shadow: 0 0 10px rgba(0,0,0,0.5);'>
<div style='font-size: 24px; font-weight: bold; color: {severity_color}; margin-bottom: 15px;'>
🩹 Enhanced Wound Severity Analysis
</div>
<div style='display: grid; grid-template-columns: 1fr 1fr; gap: 15px; margin-bottom: 20px;'>
<div style='background-color: #2c2c2c; padding: 15px; border-radius: 8px;'>
<div style='font-size: 18px; font-weight: bold; color: #ffffff; margin-bottom: 10px;'>
πŸ“ Tissue Involvement Analysis
</div>
<div style='color: #cccccc; line-height: 1.6;'>
<div>🟒 <b>Superficial (0-2mm):</b> {stats['superficial_area_cm2']:.2f} cm²</div>
<div>🟑 <b>Partial Thickness (2-4mm):</b> {stats['partial_thickness_area_cm2']:.2f} cm²</div>
<div>🟠 <b>Full Thickness (4-6mm):</b> {stats['full_thickness_area_cm2']:.2f} cm²</div>
<div>πŸŸ₯ <b>Deep (>6mm):</b> {stats['deep_area_cm2']:.2f} cmΒ²</div>
<div>πŸ“Š <b>Total Area:</b> {stats['total_area_cm2']:.2f} cmΒ²</div>
</div>
</div>
<div style='background-color: #2c2c2c; padding: 15px; border-radius: 8px;'>
<div style='font-size: 18px; font-weight: bold; color: #ffffff; margin-bottom: 10px;'>
πŸ“Š Depth Statistics
</div>
<div style='color: #cccccc; line-height: 1.6;'>
<div>πŸ“ <b>Mean Depth:</b> {stats['mean_depth_mm']:.1f} mm</div>
<div>πŸ“ <b>Max Depth:</b> {stats['max_depth_mm']:.1f} mm</div>
<div>πŸ“Š <b>Depth Std Dev:</b> {stats['depth_std_mm']:.1f} mm</div>
<div>πŸ“¦ <b>Wound Volume:</b> {stats['wound_volume_cm3']:.2f} cmΒ³</div>
<div>πŸ”₯ <b>Deep Tissue Ratio:</b> {stats['deep_ratio']*100:.1f}%</div>
</div>
</div>
</div>
<div style='background-color: #2c2c2c; padding: 15px; border-radius: 8px; margin-bottom: 20px;'>
<div style='font-size: 18px; font-weight: bold; color: #ffffff; margin-bottom: 10px;'>
πŸ“ˆ Depth Percentiles & Quality Metrics
</div>
<div style='color: #cccccc; line-height: 1.6; display: grid; grid-template-columns: 1fr 1fr; gap: 15px;'>
<div>
<div>πŸ“Š <b>25th Percentile:</b> {stats['depth_percentiles']['25']:.1f} mm</div>
<div>πŸ“Š <b>Median (50th):</b> {stats['depth_percentiles']['50']:.1f} mm</div>
<div>πŸ“Š <b>75th Percentile:</b> {stats['depth_percentiles']['75']:.1f} mm</div>
</div>
<div>
<div>πŸ” <b>Analysis Quality:</b> {stats['analysis_quality']}</div>
<div>πŸ“ <b>Depth Consistency:</b> {stats['depth_consistency']}</div>
<div>πŸ“Š <b>Data Points:</b> {stats['wound_pixel_count']:,}</div>
</div>
</div>
</div>
<div style='text-align: center; padding: 15px; background-color: #2c2c2c; border-radius: 8px; border-left: 4px solid {severity_color};'>
<div style='font-size: 20px; font-weight: bold; color: {severity_color};'>
🎯 Medical Severity Assessment: {severity}
</div>
<div style='font-size: 14px; color: #cccccc; margin-top: 5px;'>
{get_enhanced_severity_description(severity)}
</div>
</div>
</div>
"""
return report
def calibrate_depth_map(depth_map, reference_depth_mm=10.0):
"""
Calibrate depth map to real-world measurements using reference depth
This helps convert normalized depth values to actual millimeters
"""
if depth_map is None:
return depth_map
# Find the maximum depth value in the depth map
max_depth_value = np.max(depth_map)
min_depth_value = np.min(depth_map)
if max_depth_value == min_depth_value:
return depth_map
# Apply calibration to convert to millimeters
# Assuming the maximum depth in the map corresponds to reference_depth_mm
calibrated_depth = (depth_map - min_depth_value) / (max_depth_value - min_depth_value) * reference_depth_mm
return calibrated_depth
def get_enhanced_severity_description(severity):
"""Get comprehensive medical description for severity level"""
descriptions = {
"Superficial": "Epidermis-only damage. Minimal tissue loss, typically heals within 1-2 weeks with basic wound care.",
"Mild": "Superficial to partial thickness wound. Limited tissue involvement, good healing potential with proper care.",
"Moderate": "Partial to full thickness involvement. Requires careful monitoring and may need advanced wound care techniques.",
"Severe": "Full thickness with deep tissue involvement. High risk of complications, requires immediate medical attention.",
"Very Severe": "Extensive deep tissue damage. Critical condition requiring immediate surgical intervention and specialized care.",
"Unknown": "Unable to determine severity due to insufficient data or poor image quality."
}
return descriptions.get(severity, "Severity assessment unavailable.")
def create_sample_wound_mask(image_shape, center=None, radius=50):
"""Create a sample circular wound mask for testing"""
if center is None:
center = (image_shape[1] // 2, image_shape[0] // 2)
mask = np.zeros(image_shape[:2], dtype=np.uint8)
y, x = np.ogrid[:image_shape[0], :image_shape[1]]
# Create circular mask
dist_from_center = np.sqrt((x - center[0])**2 + (y - center[1])**2)
mask[dist_from_center <= radius] = 255
return mask
def create_realistic_wound_mask(image_shape, method='elliptical'):
"""Create a more realistic wound mask with irregular shapes"""
h, w = image_shape[:2]
mask = np.zeros((h, w), dtype=np.uint8)
if method == 'elliptical':
# Create elliptical wound mask
center = (w // 2, h // 2)
radius_x = min(w, h) // 3
radius_y = min(w, h) // 4
y, x = np.ogrid[:h, :w]
# Add some irregularity to make it more realistic
ellipse = ((x - center[0])**2 / (radius_x**2) +
(y - center[1])**2 / (radius_y**2)) <= 1
# Add some noise and irregularity
noise = np.random.random((h, w)) > 0.8
mask = (ellipse | noise).astype(np.uint8) * 255
elif method == 'irregular':
# Create irregular wound mask
center = (w // 2, h // 2)
radius = min(w, h) // 4
y, x = np.ogrid[:h, :w]
base_circle = np.sqrt((x - center[0])**2 + (y - center[1])**2) <= radius
# Add irregular extensions
extensions = np.zeros_like(base_circle)
for i in range(3):
angle = i * 2 * np.pi / 3
ext_x = int(center[0] + radius * 0.8 * np.cos(angle))
ext_y = int(center[1] + radius * 0.8 * np.sin(angle))
ext_radius = radius // 3
ext_circle = np.sqrt((x - ext_x)**2 + (y - ext_y)**2) <= ext_radius
extensions = extensions | ext_circle
mask = (base_circle | extensions).astype(np.uint8) * 255
# Apply morphological operations to smooth the mask
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
return mask
# --- Depth Estimation Functions ---
@spaces.GPU
def predict_depth(image):
return depth_model.infer_image(image)
def calculate_max_points(image):
"""Calculate maximum points based on image dimensions (3x pixel count)"""
if image is None:
return 10000 # Default value
h, w = image.shape[:2]
max_points = h * w * 3
# Ensure minimum and reasonable maximum values
return max(1000, min(max_points, 300000))
def update_slider_on_image_upload(image):
"""Update the points slider when an image is uploaded"""
max_points = calculate_max_points(image)
default_value = min(10000, max_points // 10) # 10% of max points as default
return gr.Slider(minimum=1000, maximum=max_points, value=default_value, step=1000,
label=f"Number of 3D points (max: {max_points:,})")
@spaces.GPU
def create_point_cloud(image, depth_map, focal_length_x=470.4, focal_length_y=470.4, max_points=30000):
"""Create a point cloud from depth map using camera intrinsics with high detail"""
h, w = depth_map.shape
# Use smaller step for higher detail (reduced downsampling)
step = max(1, int(np.sqrt(h * w / max_points) * 0.5)) # Reduce step size for more detail
# Create mesh grid for camera coordinates
y_coords, x_coords = np.mgrid[0:h:step, 0:w:step]
# Convert to camera coordinates (normalized by focal length)
x_cam = (x_coords - w / 2) / focal_length_x
y_cam = (y_coords - h / 2) / focal_length_y
# Get depth values
depth_values = depth_map[::step, ::step]
# Calculate 3D points: (x_cam * depth, y_cam * depth, depth)
x_3d = x_cam * depth_values
y_3d = y_cam * depth_values
z_3d = depth_values
# Flatten arrays
points = np.stack([x_3d.flatten(), y_3d.flatten(), z_3d.flatten()], axis=1)
# Get corresponding image colors
image_colors = image[::step, ::step, :]
colors = image_colors.reshape(-1, 3) / 255.0
# Create Open3D point cloud
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
pcd.colors = o3d.utility.Vector3dVector(colors)
return pcd
@spaces.GPU
def reconstruct_surface_mesh_from_point_cloud(pcd):
"""Convert point cloud to a mesh using Poisson reconstruction with very high detail."""
# Estimate and orient normals with high precision
pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.005, max_nn=50))
pcd.orient_normals_consistent_tangent_plane(k=50)
# Create surface mesh with maximum detail (depth=12 for very high resolution)
mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, depth=12)
# Return mesh without filtering low-density vertices
return mesh
@spaces.GPU
def create_enhanced_3d_visualization(image, depth_map, max_points=10000):
"""Create an enhanced 3D visualization using proper camera projection"""
h, w = depth_map.shape
# Downsample to avoid too many points for performance
step = max(1, int(np.sqrt(h * w / max_points)))
# Create mesh grid for camera coordinates
y_coords, x_coords = np.mgrid[0:h:step, 0:w:step]
# Convert to camera coordinates (normalized by focal length)
focal_length = 470.4 # Default focal length
x_cam = (x_coords - w / 2) / focal_length
y_cam = (y_coords - h / 2) / focal_length
# Get depth values
depth_values = depth_map[::step, ::step]
# Calculate 3D points: (x_cam * depth, y_cam * depth, depth)
x_3d = x_cam * depth_values
y_3d = y_cam * depth_values
z_3d = depth_values
# Flatten arrays
x_flat = x_3d.flatten()
y_flat = y_3d.flatten()
z_flat = z_3d.flatten()
# Get corresponding image colors
image_colors = image[::step, ::step, :]
colors_flat = image_colors.reshape(-1, 3)
# Create 3D scatter plot with proper camera projection
fig = go.Figure(data=[go.Scatter3d(
x=x_flat,
y=y_flat,
z=z_flat,
mode='markers',
marker=dict(
size=1.5,
color=colors_flat,
opacity=0.9
),
hovertemplate='<b>3D Position:</b> (%{x:.3f}, %{y:.3f}, %{z:.3f})<br>' +
'<b>Depth:</b> %{z:.2f}<br>' +
'<extra></extra>'
)])
fig.update_layout(
title="3D Point Cloud Visualization (Camera Projection)",
scene=dict(
xaxis_title="X (meters)",
yaxis_title="Y (meters)",
zaxis_title="Z (meters)",
camera=dict(
eye=dict(x=2.0, y=2.0, z=2.0),
center=dict(x=0, y=0, z=0),
up=dict(x=0, y=0, z=1)
),
aspectmode='data'
),
width=700,
height=600
)
return fig
def on_depth_submit(image, num_points, focal_x, focal_y):
original_image = image.copy()
h, w = image.shape[:2]
# Predict depth using the model
depth = predict_depth(image[:, :, ::-1]) # RGB to BGR if needed
# Save raw 16-bit depth
raw_depth = Image.fromarray(depth.astype('uint16'))
tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
raw_depth.save(tmp_raw_depth.name)
# Normalize and convert to grayscale for display
norm_depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
norm_depth = norm_depth.astype(np.uint8)
colored_depth = (matplotlib.colormaps.get_cmap('Spectral_r')(norm_depth)[:, :, :3] * 255).astype(np.uint8)
gray_depth = Image.fromarray(norm_depth)
tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
gray_depth.save(tmp_gray_depth.name)
# Create point cloud
pcd = create_point_cloud(original_image, norm_depth, focal_x, focal_y, max_points=num_points)
# Reconstruct mesh from point cloud
mesh = reconstruct_surface_mesh_from_point_cloud(pcd)
# Save mesh with faces as .ply
tmp_pointcloud = tempfile.NamedTemporaryFile(suffix='.ply', delete=False)
o3d.io.write_triangle_mesh(tmp_pointcloud.name, mesh)
# Create enhanced 3D scatter plot visualization
depth_3d = create_enhanced_3d_visualization(original_image, norm_depth, max_points=num_points)
return [(original_image, colored_depth), tmp_gray_depth.name, tmp_raw_depth.name, tmp_pointcloud.name, depth_3d]
# --- Actual Wound Segmentation Functions ---
def create_automatic_wound_mask(image, method='deep_learning'):
"""
Automatically generate wound mask from image using the actual deep learning model
Args:
image: Input image (numpy array)
method: Segmentation method (currently only 'deep_learning' supported)
Returns:
mask: Binary wound mask
"""
if image is None:
return None
# Use the actual deep learning model for segmentation
if method == 'deep_learning':
mask, _ = segmentation_model.segment_wound(image)
return mask
else:
# Fallback to deep learning if method not recognized
mask, _ = segmentation_model.segment_wound(image)
return mask
def post_process_wound_mask(mask, min_area=100):
"""Post-process the wound mask to remove noise and small objects"""
if mask is None:
return None
# Convert to binary if needed
if mask.dtype != np.uint8:
mask = mask.astype(np.uint8)
# Apply morphological operations to clean up
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10, 10))
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
# Remove small objects using OpenCV
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
mask_clean = np.zeros_like(mask)
for contour in contours:
area = cv2.contourArea(contour)
if area >= min_area:
cv2.fillPoly(mask_clean, [contour], 255)
# Fill holes
mask_clean = cv2.morphologyEx(mask_clean, cv2.MORPH_CLOSE, kernel)
return mask_clean
def analyze_wound_severity_auto(image, depth_map, pixel_spacing_mm=0.5, segmentation_method='deep_learning'):
"""Analyze wound severity with automatic mask generation using actual segmentation model"""
if image is None or depth_map is None:
return "❌ Please provide both image and depth map."
# Generate automatic wound mask using the actual model
auto_mask = create_automatic_wound_mask(image, method=segmentation_method)
if auto_mask is None:
return "❌ Failed to generate automatic wound mask. Please check if the segmentation model is loaded."
# Post-process the mask
processed_mask = post_process_wound_mask(auto_mask, min_area=500)
if processed_mask is None or np.sum(processed_mask > 0) == 0:
return "❌ No wound region detected by the segmentation model. Try uploading a different image or use manual mask."
# Analyze severity using the automatic mask
return analyze_wound_severity(image, depth_map, processed_mask, pixel_spacing_mm)
# --- Main Gradio Interface ---
with gr.Blocks(css=css, title="Wound Analysis & Depth Estimation") as demo:
gr.HTML("<h1>Wound Analysis & Depth Estimation System</h1>")
gr.Markdown("### Comprehensive wound analysis with classification and 3D depth mapping capabilities")
# Shared image state
shared_image = gr.State()
with gr.Tabs():
# Tab 1: Wound Classification
with gr.Tab("1. Wound Classification"):
gr.Markdown("### Step 1: Upload and classify your wound image")
gr.Markdown("This module analyzes wound images and provides classification with AI-powered reasoning.")
with gr.Row():
with gr.Column(scale=1):
wound_image_input = gr.Image(label="Upload Wound Image", type="pil", height=350)
with gr.Column(scale=1):
wound_prediction_box = gr.HTML()
wound_reasoning_box = gr.HTML()
# Button to pass image to depth estimation
with gr.Row():
pass_to_depth_btn = gr.Button("πŸ“Š Pass Image to Depth Analysis", variant="secondary", size="lg")
pass_status = gr.HTML("")
wound_image_input.change(fn=classify_wound_image, inputs=wound_image_input,
outputs=[wound_prediction_box, wound_reasoning_box])
# Store image when uploaded for classification
wound_image_input.change(
fn=lambda img: img,
inputs=[wound_image_input],
outputs=[shared_image]
)
# Tab 2: Depth Estimation
with gr.Tab("2. Depth Estimation & 3D Visualization"):
gr.Markdown("### Step 2: Generate depth maps and 3D visualizations")
gr.Markdown("This module creates depth maps and 3D point clouds from your images.")
with gr.Row():
depth_input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output')
with gr.Row():
depth_submit = gr.Button(value="Compute Depth", variant="primary")
load_shared_btn = gr.Button("πŸ”„ Load Image from Classification", variant="secondary")
points_slider = gr.Slider(minimum=1000, maximum=10000, value=10000, step=1000,
label="Number of 3D points (upload image to update max)")
with gr.Row():
focal_length_x = gr.Slider(minimum=100, maximum=1000, value=470.4, step=10,
label="Focal Length X (pixels)")
focal_length_y = gr.Slider(minimum=100, maximum=1000, value=470.4, step=10,
label="Focal Length Y (pixels)")
with gr.Row():
gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download")
raw_file = gr.File(label="16-bit raw output (can be considered as disparity)", elem_id="download")
point_cloud_file = gr.File(label="Point Cloud (.ply)", elem_id="download")
# 3D Visualization
gr.Markdown("### 3D Point Cloud Visualization")
gr.Markdown("Enhanced 3D visualization using proper camera projection. Hover over points to see 3D coordinates.")
depth_3d_plot = gr.Plot(label="3D Point Cloud")
# Store depth map for severity analysis
depth_map_state = gr.State()
# Tab 3: Wound Severity Analysis
with gr.Tab("3. 🩹 Wound Severity Analysis"):
gr.Markdown("### Step 3: Analyze wound severity using depth maps")
gr.Markdown("This module analyzes wound severity based on depth distribution and area measurements.")
with gr.Row():
severity_input_image = gr.Image(label="Original Image", type='numpy')
severity_depth_map = gr.Image(label="Depth Map (from Tab 2)", type='numpy')
with gr.Row():
wound_mask_input = gr.Image(label="Auto-Generated Wound Mask", type='numpy')
severity_output = gr.HTML(label="Severity Analysis Report")
gr.Markdown("**Note:** The deep learning segmentation model will automatically generate a wound mask when you upload an image or load a depth map.")
with gr.Row():
auto_severity_button = gr.Button("πŸ€– Analyze Severity with Auto-Generated Mask", variant="primary", size="lg")
manual_severity_button = gr.Button("πŸ” Manual Mask Analysis", variant="secondary", size="lg")
pixel_spacing_slider = gr.Slider(minimum=0.1, maximum=2.0, value=0.5, step=0.1,
label="Pixel Spacing (mm/pixel)")
depth_calibration_slider = gr.Slider(minimum=5.0, maximum=30.0, value=15.0, step=1.0,
label="Depth Calibration (mm)",
info="Adjust based on expected maximum wound depth")
gr.Markdown("**Pixel Spacing:** Adjust based on your camera calibration. Default is 0.5 mm/pixel.")
gr.Markdown("**Depth Calibration:** Adjust the maximum expected wound depth to improve measurement accuracy. For shallow wounds use 5-10mm, for deep wounds use 15-30mm.")
with gr.Row():
# Load depth map from previous tab
load_depth_btn = gr.Button("πŸ”„ Load Depth Map from Tab 2", variant="secondary")
gr.Markdown("**Note:** When you load a depth map or upload an image, the segmentation model will automatically generate a wound mask.")
# Update slider when image is uploaded
depth_input_image.change(
fn=update_slider_on_image_upload,
inputs=[depth_input_image],
outputs=[points_slider]
)
# Modified depth submit function to store depth map
def on_depth_submit_with_state(image, num_points, focal_x, focal_y):
results = on_depth_submit(image, num_points, focal_x, focal_y)
# Extract depth map from results for severity analysis
depth_map = None
if image is not None:
depth = predict_depth(image[:, :, ::-1]) # RGB to BGR if needed
# Normalize depth for severity analysis
norm_depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth_map = norm_depth.astype(np.uint8)
return results + [depth_map]
depth_submit.click(on_depth_submit_with_state,
inputs=[depth_input_image, points_slider, focal_length_x, focal_length_y],
outputs=[depth_image_slider, gray_depth_file, raw_file, point_cloud_file, depth_3d_plot, depth_map_state])
# Load depth map to severity tab and auto-generate mask
def load_depth_to_severity(depth_map, original_image):
if depth_map is None:
return None, None, None, "❌ No depth map available. Please compute depth in Tab 2 first."
# Auto-generate wound mask using segmentation model
if original_image is not None:
auto_mask, _ = segmentation_model.segment_wound(original_image)
if auto_mask is not None:
# Post-process the mask
processed_mask = post_process_wound_mask(auto_mask, min_area=500)
if processed_mask is not None and np.sum(processed_mask > 0) > 0:
return depth_map, original_image, processed_mask, "βœ… Depth map loaded and wound mask auto-generated!"
else:
return depth_map, original_image, None, "βœ… Depth map loaded but no wound detected. Try uploading a different image."
else:
return depth_map, original_image, None, "βœ… Depth map loaded but segmentation failed. Try uploading a different image."
else:
return depth_map, original_image, None, "βœ… Depth map loaded successfully!"
load_depth_btn.click(
fn=load_depth_to_severity,
inputs=[depth_map_state, depth_input_image],
outputs=[severity_depth_map, severity_input_image, wound_mask_input, gr.HTML()]
)
# Automatic severity analysis function
def run_auto_severity_analysis(image, depth_map, pixel_spacing, depth_calibration):
if depth_map is None:
return "❌ Please load depth map from Tab 2 first."
# Generate automatic wound mask using the actual model
auto_mask = create_automatic_wound_mask(image, method='deep_learning')
if auto_mask is None:
return "❌ Failed to generate automatic wound mask. Please check if the segmentation model is loaded."
# Post-process the mask with fixed minimum area
processed_mask = post_process_wound_mask(auto_mask, min_area=500)
if processed_mask is None or np.sum(processed_mask > 0) == 0:
return "❌ No wound region detected by the segmentation model. Try uploading a different image or use manual mask."
# Analyze severity using the automatic mask
return analyze_wound_severity(image, depth_map, processed_mask, pixel_spacing, depth_calibration)
# Manual severity analysis function
def run_manual_severity_analysis(image, depth_map, wound_mask, pixel_spacing, depth_calibration):
if depth_map is None:
return "❌ Please load depth map from Tab 2 first."
if wound_mask is None:
return "❌ Please upload a wound mask (binary image where white pixels represent the wound area)."
return analyze_wound_severity(image, depth_map, wound_mask, pixel_spacing, depth_calibration)
# Connect event handlers
auto_severity_button.click(
fn=run_auto_severity_analysis,
inputs=[severity_input_image, severity_depth_map, pixel_spacing_slider, depth_calibration_slider],
outputs=[severity_output]
)
manual_severity_button.click(
fn=run_manual_severity_analysis,
inputs=[severity_input_image, severity_depth_map, wound_mask_input, pixel_spacing_slider, depth_calibration_slider],
outputs=[severity_output]
)
# Auto-generate mask when image is uploaded
def auto_generate_mask_on_image_upload(image):
if image is None:
return None, "❌ No image uploaded."
# Generate automatic wound mask using segmentation model
auto_mask, _ = segmentation_model.segment_wound(image)
if auto_mask is not None:
# Post-process the mask
processed_mask = post_process_wound_mask(auto_mask, min_area=500)
if processed_mask is not None and np.sum(processed_mask > 0) > 0:
return processed_mask, "βœ… Wound mask auto-generated using deep learning model!"
else:
return None, "βœ… Image uploaded but no wound detected. Try uploading a different image."
else:
return None, "βœ… Image uploaded but segmentation failed. Try uploading a different image."
# Load shared image from classification tab
def load_shared_image(shared_img):
if shared_img is None:
return gr.Image(), "❌ No image available from classification tab"
# Convert PIL image to numpy array for depth estimation
if hasattr(shared_img, 'convert'):
# It's a PIL image, convert to numpy
img_array = np.array(shared_img)
return img_array, "βœ… Image loaded from classification tab"
else:
# Already numpy array
return shared_img, "βœ… Image loaded from classification tab"
# Auto-generate mask when image is uploaded to severity tab
severity_input_image.change(
fn=auto_generate_mask_on_image_upload,
inputs=[severity_input_image],
outputs=[wound_mask_input, gr.HTML()]
)
load_shared_btn.click(
fn=load_shared_image,
inputs=[shared_image],
outputs=[depth_input_image, gr.HTML()]
)
# Pass image to depth tab function
def pass_image_to_depth(img):
if img is None:
return "❌ No image uploaded in classification tab"
return "βœ… Image ready for depth analysis! Switch to tab 2 and click 'Load Image from Classification'"
pass_to_depth_btn.click(
fn=pass_image_to_depth,
inputs=[shared_image],
outputs=[pass_status]
)
if __name__ == '__main__':
demo.queue().launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)