Spaces:
Running
Running
# ------------------------------------------------------------ # | |
# | |
# file : preprocessing/normalisation.py | |
# author : CM | |
# | |
# ------------------------------------------------------------ # | |
import numpy as np | |
# Rescaling (min-max normalization) | |
def linear_intensity_normalization(loaded_dataset): | |
loaded_dataset = (loaded_dataset / loaded_dataset.max()) | |
return loaded_dataset | |
# Preprocess dataset with intensity normalisation | |
# (zero mean and unit variance) | |
def standardization_intensity_normalization(dataset, dtype): | |
mean = dataset.mean() | |
std = dataset.std() | |
return ((dataset - mean) / std).astype(dtype) | |
# Intensities normalized to the range [0, 1] | |
def intensityNormalisationFeatureScaling(dataset, dtype): | |
max = dataset.max() | |
min = dataset.min() | |
return ((dataset - min) / (max - min)).astype(dtype) | |
# Intensity max clipping with c "max value" | |
def intensityMaxClipping(dataset, c, dtype): | |
return np.clip(a=dataset, a_min=0, a_max=c).astype(dtype) | |
# Intensity projection | |
def intensityProjection(dataset, p, dtype): | |
return (dataset ** p).astype(dtype) |