from keras.models import Model from keras.layers import Input from keras.layers import Conv2D, BatchNormalization, MaxPooling2D, Dropout, Concatenate, UpSampling2D class SegNet: def __init__(self, n_filters, input_dim_x, input_dim_y, num_channels): self.input_dim_x = input_dim_x self.input_dim_y = input_dim_y self.n_filters = n_filters self.num_channels = num_channels def get_SegNet(self): convnet_input = Input(shape=(self.input_dim_x, self.input_dim_y, self.num_channels)) encoder_conv1 = Conv2D(self.n_filters, kernel_size=9, activation='relu', padding='same')(convnet_input) pool1 = MaxPooling2D(pool_size=(2, 2))(encoder_conv1) encoder_conv2 = Conv2D(self.n_filters, kernel_size=5, activation='relu', padding='same')(pool1) pool2 = MaxPooling2D(pool_size=(2, 2))(encoder_conv2) encoder_conv3 = Conv2D(self.n_filters * 2, kernel_size=5, activation='relu', padding='same')(pool2) pool3 = MaxPooling2D(pool_size=(2, 2))(encoder_conv3) encoder_conv4 = Conv2D(self.n_filters * 2, kernel_size=5, activation='relu', padding='same')(pool3) pool4 = MaxPooling2D(pool_size=(2, 2))(encoder_conv4) conv5 = Conv2D(self.n_filters, kernel_size=5, activation='relu', padding='same')(pool4) decoder_conv6 = Conv2D(self.n_filters, kernel_size=7, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(conv5)) decoder_conv7 = Conv2D(self.n_filters, kernel_size=5, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(decoder_conv6)) decoder_conv8 = Conv2D(self.n_filters, kernel_size=5, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(decoder_conv7)) #decoder_conv9 = Conv2D(self.n_filters, kernel_size=5, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(decoder_conv8)) decoder_conv9 = Conv2D(1, kernel_size=1, activation='sigmoid', padding='same')(UpSampling2D(size=(2, 2))(decoder_conv8)) return Model(outputs=decoder_conv9, inputs=convnet_input), 'SegNet'