# ------------------------------------------------------------ # # # file : preprocessing/threshold.py # author : CM # Preprocess function for Bullitt dataset # # ------------------------------------------------------------ # import os import sys import numpy as np import nibabel as nib from utils.io.write import npToNii from utils.config.read import readConfig # Get the threshold for preprocessing def getThreshold(dataset_mra, dataset_gd): threshold = dataset_mra.max() for i in range(0,len(dataset_mra)): mra = dataset_mra[i] gd = dataset_gd[i] for x in range(0, mra.shape[0]): for y in range(0, mra.shape[1]): for z in range(0, mra.shape[2]): if(gd[x,y,z] == 1 and mra[x,y,z] < threshold): threshold = mra[x,y,z] return threshold # Apply threshold to an image def thresholding(data, threshold): output = np.copy(data) for x in range(0, data.shape[0]): for y in range(0, data.shape[1]): for z in range(0, data.shape[2]): if data[x,y,z] > threshold: output[x,y,z] = data[x,y,z] else: output[x,y,z] = 0 return output config_filename = sys.argv[1] if(not os.path.isfile(config_filename)): sys.exit(1) config = readConfig(config_filename) output_folder = sys.argv[2] if(not os.path.isdir(output_folder)): sys.exit(1) print("Loading training dataset") train_mra_dataset = np.empty((30, config["image_size_x"], config["image_size_y"], config["image_size_z"])) i = 0 files = os.listdir(config["dataset_train_mra_path"]) files.sort() for filename in files: if(i>=30): break print(filename) train_mra_dataset[i, :, :, :] = nib.load(os.path.join(config["dataset_train_mra_path"], filename)).get_data() i = i + 1 train_gd_dataset = np.empty((30, config["image_size_x"], config["image_size_y"], config["image_size_z"])) i = 0 files = os.listdir(config["dataset_train_gd_path"]) files.sort() for filename in files: if(i>=30): break print(filename) train_gd_dataset[i, :, :, :] = nib.load(os.path.join(config["dataset_train_gd_path"], filename)).get_data() i = i + 1 print("Compute threshold") threshold = getThreshold(train_mra_dataset, train_gd_dataset) train_mra_dataset = None train_gd_dataset = None print("Apply preprocessing to test image") files = os.listdir(config["dataset_test_mra_path"]) files.sort() for filename in files: print(filename) data = nib.load(os.path.join(config["dataset_test_mra_path"], filename)).get_data() print(np.average(data)) preprocessed = thresholding(data, threshold) print(np.average(preprocessed)) npToNii(preprocessed,os.path.join(output_folder+'/test_Images', 'pre_'+filename)) print("Apply threshold to train image : ", threshold) files = os.listdir(config["dataset_train_mra_path"]) files.sort() for filename in files: print(filename) data = nib.load(os.path.join(config["dataset_train_mra_path"], filename)).get_data() print(np.average(data)) preprocessed = thresholding(data, threshold) print(np.average(preprocessed)) npToNii(preprocessed,os.path.join(output_folder+'/train_Images', 'pre_'+filename))