import os from keras.models import Model from keras.layers import Input from keras.layers import Conv2D, MaxPooling2D, Dropout, UpSampling2D from utils.BilinearUpSampling import BilinearUpSampling2D def FCN_Vgg16_16s(input_shape=None, weight_decay=0., batch_momentum=0.9, batch_shape=None, classes=1): if batch_shape: img_input = Input(batch_shape=batch_shape) image_size = batch_shape[1:3] else: img_input = Input(shape=input_shape) image_size = input_shape[0:2] # Block 1 x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1', kernel_regularizer='l2')(img_input) x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2', kernel_regularizer='l2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) # Block 2 x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1', kernel_regularizer='l2')(x) x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2', kernel_regularizer='l2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) # Block 3 x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1', kernel_regularizer='l2')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2', kernel_regularizer='l2')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3', kernel_regularizer='l2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x) # Block 4 x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1', kernel_regularizer='l2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2', kernel_regularizer='l2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3', kernel_regularizer='l2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x) # Block 5 x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1', kernel_regularizer='l2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2', kernel_regularizer='l2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3', kernel_regularizer='l2')(x) # Convolutional layers transfered from fully-connected layers x = Conv2D(4096, (7, 7), activation='relu', padding='same', dilation_rate=(2, 2), name='fc1', kernel_regularizer='l2')(x) x = Dropout(0.5)(x) x = Conv2D(4096, (1, 1), activation='relu', padding='same', name='fc2', kernel_regularizer='l2')(x) x = Dropout(0.5)(x) #classifying layer x = Conv2D(classes, (1, 1), kernel_initializer='he_normal', activation='linear', padding='valid', strides=(1, 1), kernel_regularizer='l2')(x) x = BilinearUpSampling2D(size=(16, 16))(x) model = Model(img_input, x) model_name = 'FCN_Vgg16_16' return model, model_name