from keras.models import Model from keras.layers import Input from keras.layers import Conv2D, BatchNormalization, MaxPooling2D, Dropout, Concatenate, UpSampling2D class Unet2D: def __init__(self, n_filters, input_dim_x, input_dim_y, num_channels): self.input_dim_x = input_dim_x self.input_dim_y = input_dim_y self.n_filters = n_filters self.num_channels = num_channels def get_unet_model_5_levels(self): unet_input = Input(shape=(self.input_dim_x, self.input_dim_y, self.num_channels)) conv1 = Conv2D(self.n_filters, kernel_size=3, activation='relu', padding='same')(unet_input) conv1 = Conv2D(self.n_filters, kernel_size=3, activation='relu', padding='same')(conv1) conv1 = BatchNormalization()(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(self.n_filters*2, kernel_size=3, activation='relu', padding='same')(pool1) conv2 = Conv2D(self.n_filters*2, kernel_size=3, activation='relu', padding='same')(conv2) conv2 = BatchNormalization()(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = Conv2D(self.n_filters*4, kernel_size=3, activation='relu', padding='same')(pool2) conv3 = Conv2D(self.n_filters*4, kernel_size=3, activation='relu', padding='same')(conv3) conv3 = BatchNormalization()(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) conv4 = Conv2D(self.n_filters*8, kernel_size=3, activation='relu', padding='same')(pool3) conv4 = Conv2D(self.n_filters*8, kernel_size=3, activation='relu', padding='same')(conv4) conv4 = BatchNormalization()(conv4) drop4 = Dropout(0.5)(conv4) pool4 = MaxPooling2D(pool_size=(2, 2))(drop4) conv5 = Conv2D(self.n_filters*16, kernel_size=3, activation='relu', padding='same')(pool4) conv5 = Conv2D(self.n_filters*16, kernel_size=3, activation='relu', padding='same')(conv5) conv5 = BatchNormalization()(conv5) drop5 = Dropout(0.5)(conv5) up6 = Conv2D(self.n_filters*16, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(drop5)) concat6 = Concatenate()([drop4, up6]) conv6 = Conv2D(self.n_filters*8, kernel_size=3, activation='relu', padding='same')(concat6) conv6 = Conv2D(self.n_filters*8, kernel_size=3, activation='relu', padding='same')(conv6) conv6 = BatchNormalization()(conv6) up7 = Conv2D(self.n_filters*8, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(conv6)) concat7 = Concatenate()([conv3, up7]) conv7 = Conv2D(self.n_filters*4, kernel_size=3, activation='relu', padding='same')(concat7) conv7 = Conv2D(self.n_filters*4, kernel_size=3, activation='relu', padding='same')(conv7) conv7 = BatchNormalization()(conv7) up8 = Conv2D(self.n_filters*4, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(conv7)) concat8 = Concatenate()([conv2, up8]) conv8 = Conv2D(self.n_filters*2, kernel_size=3, activation='relu', padding='same')(concat8) conv8 = Conv2D(self.n_filters*2, kernel_size=3, activation='relu', padding='same')(conv8) conv8 = BatchNormalization()(conv8) up9 = Conv2D(self.n_filters*2, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(conv8)) concat9 = Concatenate()([conv1, up9]) conv9 = Conv2D(self.n_filters, kernel_size=3, activation='relu', padding='same')(concat9) conv9 = Conv2D(self.n_filters, kernel_size=3, activation='relu', padding='same')(conv9) conv9 = BatchNormalization()(conv9) conv10 = Conv2D(3, kernel_size=1, activation='sigmoid', padding='same')(conv9) return Model(outputs=conv10, inputs=unet_input), 'unet_model_5_levels' def get_unet_model_4_levels(self): unet_input = Input(shape=(self.input_dim_x, self.input_dim_y, self.num_channels)) conv1 = Conv2D(self.n_filters*2, kernel_size=3, activation='relu', padding='same')(unet_input) conv1 = Conv2D(self.n_filters*2, kernel_size=3, activation='relu', padding='same')(conv1) conv1 = BatchNormalization()(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(self.n_filters*4, kernel_size=3, activation='relu', padding='same')(pool1) conv2 = Conv2D(self.n_filters*4, kernel_size=3, activation='relu', padding='same')(conv2) conv2 = BatchNormalization()(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = Conv2D(self.n_filters*8, kernel_size=3, activation='relu', padding='same')(pool2) conv3 = Conv2D(self.n_filters*8, kernel_size=3, activation='relu', padding='same')(conv3) conv3 = BatchNormalization()(conv3) drop3 = Dropout(0.5)(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(drop3) conv4 = Conv2D(self.n_filters*16, kernel_size=3, activation='relu', padding='same')(pool3) conv4 = Conv2D(self.n_filters*16, kernel_size=3, activation='relu', padding='same')(conv4) conv4 = BatchNormalization()(conv4) drop4 = Dropout(0.5)(conv4) up5 = Conv2D(self.n_filters*16, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(drop4)) concat5 = Concatenate()([drop3, up5]) conv5 = Conv2D(self.n_filters*8, kernel_size=3, activation='relu', padding='same')(concat5) conv5 = Conv2D(self.n_filters*8, kernel_size=3, activation='relu', padding='same')(conv5) conv5 = BatchNormalization()(conv5) up6 = Conv2D(self.n_filters*8, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(conv5)) concat6 = Concatenate()([conv2, up6]) conv6 = Conv2D(self.n_filters*4, kernel_size=3, activation='relu', padding='same')(concat6) conv6 = Conv2D(self.n_filters*4, kernel_size=3, activation='relu', padding='same')(conv6) conv6 = BatchNormalization()(conv6) up7 = Conv2D(self.n_filters*4, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(conv6)) concat7 = Concatenate()([conv1, up7]) conv7 = Conv2D(self.n_filters*2, kernel_size=3, activation='relu', padding='same')(concat7) conv7 = Conv2D(self.n_filters*2, kernel_size=3, activation='relu', padding='same')(conv7) conv7 = BatchNormalization()(conv7) conv9 = Conv2D(3, kernel_size=1, activation='sigmoid', padding='same')(conv7) return Model(outputs=conv9, inputs=unet_input), 'unet_model_4_levels' def get_unet_model_yuanqing(self): # Model inspired by https://github.com/yuanqing811/ISIC2018 unet_input = Input(shape=(self.input_dim_x, self.input_dim_y, self.num_channels)) conv1 = Conv2D(self.n_filters, kernel_size=3, activation='relu', padding='same')(unet_input) conv1 = Conv2D(self.n_filters, kernel_size=3, activation='relu', padding='same')(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(self.n_filters * 2, kernel_size=3, activation='relu', padding='same')(pool1) conv2 = Conv2D(self.n_filters * 2, kernel_size=3, activation='relu', padding='same')(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = Conv2D(self.n_filters * 4, kernel_size=3, activation='relu', padding='same')(pool2) conv3 = Conv2D(self.n_filters * 4, kernel_size=3, activation='relu', padding='same')(conv3) conv3 = Conv2D(self.n_filters * 4, kernel_size=3, activation='relu', padding='same')(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) conv4 = Conv2D(self.n_filters * 8, kernel_size=3, activation='relu', padding='same')(pool3) conv4 = Conv2D(self.n_filters * 8, kernel_size=3, activation='relu', padding='same')(conv4) conv4 = Conv2D(self.n_filters * 8, kernel_size=3, activation='relu', padding='same')(conv4) pool4 = MaxPooling2D(pool_size=(2, 2))(conv4) conv5 = Conv2D(self.n_filters * 8, kernel_size=3, activation='relu', padding='same')(pool4) conv5 = Conv2D(self.n_filters * 8, kernel_size=3, activation='relu', padding='same')(conv5) conv5 = Conv2D(self.n_filters * 8, kernel_size=3, activation='relu', padding='same')(conv5) up6 = Conv2D(self.n_filters * 4, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(conv5)) feature4 = Conv2D(self.n_filters * 4, kernel_size=3, activation='relu', padding='same')(conv4) concat6 = Concatenate()([feature4, up6]) conv6 = Conv2D(self.n_filters * 4, kernel_size=3, activation='relu', padding='same')(concat6) conv6 = Conv2D(self.n_filters * 4, kernel_size=3, activation='relu', padding='same')(conv6) up7 = Conv2D(self.n_filters * 2, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(conv6)) feature3 = Conv2D(self.n_filters * 2, kernel_size=3, activation='relu', padding='same')(conv3) concat7 = Concatenate()([feature3, up7]) conv7 = Conv2D(self.n_filters * 2, kernel_size=3, activation='relu', padding='same')(concat7) conv7 = Conv2D(self.n_filters * 2, kernel_size=3, activation='relu', padding='same')(conv7) up8 = Conv2D(self.n_filters * 1, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(conv7)) feature2 = Conv2D(self.n_filters * 1, kernel_size=3, activation='relu', padding='same')(conv2) concat8 = Concatenate()([feature2, up8]) conv8 = Conv2D(self.n_filters * 1, kernel_size=3, activation='relu', padding='same')(concat8) conv8 = Conv2D(self.n_filters * 1, kernel_size=3, activation='relu', padding='same')(conv8) up9 = Conv2D(int(self.n_filters / 2), 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(conv8)) feature1 = Conv2D(int(self.n_filters / 2), kernel_size=3, activation='relu', padding='same')(conv1) concat9 = Concatenate()([feature1, up9]) conv9 = Conv2D(int(self.n_filters / 2), kernel_size=3, activation='relu', padding='same')(concat9) conv9 = Conv2D(int(self.n_filters / 2), kernel_size=3, activation='relu', padding='same')(conv9) conv9 = Conv2D(3, kernel_size=3, activation='relu', padding='same')(conv9) conv10 = Conv2D(1, kernel_size=1, activation='sigmoid')(conv9) return Model(outputs=conv10, inputs=unet_input), 'unet_model_yuanqing'