File size: 6,705 Bytes
5792bf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7f773
5792bf1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import streamlit as st
from GoogleNews import GoogleNews

import pandas as pd
import numpy as np
import spacy
import gensim
import string
import re

import sklearn
from sklearn.metrics import classification_report, recall_score, precision_score, accuracy_score, f1_score
from sklearn.metrics.pairwise import cosine_similarity

nlp = spacy.load("spacy.aravec.model")
#--------------------------------------------------------------------------------------------------------------- 
#----------------------------------------------  Side bar ------------------------------------------------------ 
#--------------------------------------------------------------------------------------------------------------- 
st.sidebar.markdown('ู…ูˆุงู‚ุน ุงุฎุจุงุฑูŠู‡ ู…ุนุชู…ุฏู‡ ')
st.sidebar.markdown("[ุงู„ุนุฑุจูŠุฉ](https://www.alarabiya.net/)")
st.sidebar.markdown("[ุงู„ุฌุฒูŠุฑุฉ ู†ุช](https://www.aljazeera.net/news/)")
st.sidebar.markdown("[ูˆูƒุงู„ุฉ ุงู„ุงู†ุจุงุก ุงู„ูƒูˆูŠุชูŠุฉ](https://www.kuna.net.kw/Default.aspx?language=ar)")
#--------------------------------------------------------------------------------------------------------------- 


st.write("""
Arabic headline news detection
""")

tx = st.text_input (''' ุงู„ุฑุฌุงุก ุงุฏุฎุงู„ ุงู„ุนู†ูˆุงู† ุงู„ู…ุฑุงุฏ ุงู„ุชุงูƒุฏ ู…ู† ุตุญุชู‡ ''')

#--------------------------------------------------------------------------------------------------------------- 
#----------------------------------------Pre-proccessing functions---------------------------------------------- 
#--------------------------------------------------------------------------------------------------------------- 
def clean_str(text):
    search = ["ุฃ","ุฅ","ุข","ุฉ","_","-","/",".","ุŒ"," ูˆ "," ูŠุง ",'"',"ู€","'","ู‰","\\",'\n', '\t','"','?','ุŸ','!']
    replace = ["ุง","ุง","ุง","ู‡"," "," ","","",""," ูˆ"," ูŠุง","","","","ูŠ","",' ', ' ',' ',' ? ',' ุŸ ',' ! ']
    
    #remove tashkeel
    p_tashkeel = re.compile(r'[\u0617-\u061A\u064B-\u0652]')
    text = re.sub(p_tashkeel,"", text)
    
    #remove longation
    p_longation = re.compile(r'(.)\1+')
    subst = r"\1\1"
    text = re.sub(p_longation, subst, text)
    
    text = text.replace('ูˆูˆ', 'ูˆ')
    text = text.replace('ูŠูŠ', 'ูŠ')
    text = text.replace('ุงุง', 'ุง')
    
    for i in range(0, len(search)):
        text = text.replace(search[i], replace[i])
    
    #trim    
    text = text.strip()

    return text


def split_hashtag_to_words(tag):
    tag = tag.replace('#','')
    tags = tag.split('_')
    if len(tags) > 1 :
        
        return tags
    pattern = re.compile(r"[A-Z][a-z]+|\d+|[A-Z]+(?![a-z])")
    return pattern.findall(tag)

def clean_hashtag(text):
    words = text.split()
    text = list()
    for word in words:
        if is_hashtag(word):
            text.extend(extract_hashtag(word))
        else:
            text.append(word)
    return " ".join(text)

def is_hashtag(word):
    if word.startswith("#"):
        return True
    else:
        return False

def extract_hashtag(text):
    
    hash_list = ([re.sub(r"(\W+)$", "", i) for i in text.split() if i.startswith("#")])
    word_list = []
    for word in hash_list :
        word_list.extend(split_hashtag_to_words(word))
    return word_list

# Define the preprocessing Class
class Preprocessor:
    def __init__(self, tokenizer, **cfg):
        self.tokenizer = tokenizer

    def __call__(self, text):
        preprocessed = clean_str(text)
        return self.tokenizer(preprocessed)   
      
#--------------------------------------------------------------------------------------------------------------- 
#----------------------------------------- END OF PRE-PROCESSING------------------------------------------------ 
#--------------------------------------------------------------------------------------------------------------- 
# Apply the `Preprocessor` Class

nlp.tokenizer = Preprocessor(nlp.tokenizer)

if len(tx) != 0:
    googlenews = GoogleNews(lang='ar')
    googlenews.clear()

    f =0 
    Prediction =''
    top_similar_ind =''
    top_similar_news =''
    medium =''
    top_similar_ind2 =''
    tp_desc =''

    st.markdown(f"Searching for: { tx         }")
    st.markdown(f"ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€ู€")


    tx = clean_hashtag(tx)
    tx = clean_str(tx) 


    googlenews.search(tx)
    result = googlenews.page_at(1)
    googlenews.clear()

    if len(result) == 0:
      Prediction ='ุงู„ุฎุจุฑ ุฒุงุฆู'
      top_similar_news ='ู„ุง ูŠูˆุฌุฏ ุงุฎุจุงุฑ ู…ู…ุงุซู„ู‡'
      medium ='ู„ุง ูŠูˆุฌุฏ ู…ุตุฏุฑ'
      tp_desc ='ู„ุง ูŠูˆุฌุฏ ูˆุตู'

    else:
      result_text = {"Text":[]}
      
        #google search
      for i in range(len(result)):
        title =result[i]['title']
        result_text['Text'].append(title)
       

      result_text2 = {"Text":[]}
        #google search
      for i in range(len(result)):
        desc =result[i]['desc']
        result_text2['Text'].append(desc) 
        
      result_text = pd.DataFrame(result_text)
      result_text2 = pd.DataFrame(result_text2)
      
      data = pd.DataFrame()
      data['Text2'] = result_text['Text'].copy()
      
      data['Text2'] = data['Text2'].apply(lambda x: nlp(x).similarity(nlp(tx)))
      sg300top = data['Text2'].max(axis = 0)
      
      top_similar_ind = np.argmax(data['Text2'])
      top_similar_news = result[top_similar_ind]['title']
      descr = result[top_similar_ind]['desc']
      medium = result[top_similar_ind]['media']
      date = result[top_similar_ind]['date']
      link = result[top_similar_ind]['link']
      
      data['Text3'] = result_text2['Text'].copy()
      data['Text3'] = data['Text3'].apply(lambda x: nlp(x).similarity(nlp(tx)))
      sg300top2 = data['Text3'].max(axis = 0)
      top_similar_ind2 = np.argmax(data['Text3'])
      tp_desc = result[top_similar_ind2]['desc']
      
      if sg300top >= .85 or sg300top2 >= .85 :
        Prediction ='ุงู„ุฎุจุฑ ุตุญูŠุญ'
      else:
        Prediction =' ุงู„ุฎุจุฑ ุฒุงุฆู'
        
                
    
    st.markdown(f"System Prediction : { Prediction         }")
    st.markdown(f"ุงู„ุฎุจุฑ ุงู„ู…ู…ุงุซู„: { top_similar_news         }")
    st.markdown(f"")
    st.markdown(f"ุชุงุฑูŠุฎ ุงู„ุฎุจุฑ: { date         }")
    st.markdown(f"")
    st.markdown(f"ุงู„ุชูุตูŠู„: { descr         }")
    st.markdown(f"")
    st.markdown(f"ุงู„ู…ุตุฏุฑ: { medium         }")
    st.markdown(f"")
    st.markdown(f"ุฑุงุจุท ุงู„ุฎุจุฑ: { link         }")
    




#st.markdown(f"Searching for: { tx         }")