File size: 6,705 Bytes
5792bf1 ef7f773 5792bf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import streamlit as st
from GoogleNews import GoogleNews
import pandas as pd
import numpy as np
import spacy
import gensim
import string
import re
import sklearn
from sklearn.metrics import classification_report, recall_score, precision_score, accuracy_score, f1_score
from sklearn.metrics.pairwise import cosine_similarity
nlp = spacy.load("spacy.aravec.model")
#---------------------------------------------------------------------------------------------------------------
#---------------------------------------------- Side bar ------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------
st.sidebar.markdown('ู
ูุงูุน ุงุฎุจุงุฑูู ู
ุนุชู
ุฏู ')
st.sidebar.markdown("[ุงูุนุฑุจูุฉ](https://www.alarabiya.net/)")
st.sidebar.markdown("[ุงูุฌุฒูุฑุฉ ูุช](https://www.aljazeera.net/news/)")
st.sidebar.markdown("[ููุงูุฉ ุงูุงูุจุงุก ุงููููุชูุฉ](https://www.kuna.net.kw/Default.aspx?language=ar)")
#---------------------------------------------------------------------------------------------------------------
st.write("""
Arabic headline news detection
""")
tx = st.text_input (''' ุงูุฑุฌุงุก ุงุฏุฎุงู ุงูุนููุงู ุงูู
ุฑุงุฏ ุงูุชุงูุฏ ู
ู ุตุญุชู ''')
#---------------------------------------------------------------------------------------------------------------
#----------------------------------------Pre-proccessing functions----------------------------------------------
#---------------------------------------------------------------------------------------------------------------
def clean_str(text):
search = ["ุฃ","ุฅ","ุข","ุฉ","_","-","/",".","ุ"," ู "," ูุง ",'"',"ู","'","ู","\\",'\n', '\t','"','?','ุ','!']
replace = ["ุง","ุง","ุง","ู"," "," ","","",""," ู"," ูุง","","","","ู","",' ', ' ',' ',' ? ',' ุ ',' ! ']
#remove tashkeel
p_tashkeel = re.compile(r'[\u0617-\u061A\u064B-\u0652]')
text = re.sub(p_tashkeel,"", text)
#remove longation
p_longation = re.compile(r'(.)\1+')
subst = r"\1\1"
text = re.sub(p_longation, subst, text)
text = text.replace('ูู', 'ู')
text = text.replace('ูู', 'ู')
text = text.replace('ุงุง', 'ุง')
for i in range(0, len(search)):
text = text.replace(search[i], replace[i])
#trim
text = text.strip()
return text
def split_hashtag_to_words(tag):
tag = tag.replace('#','')
tags = tag.split('_')
if len(tags) > 1 :
return tags
pattern = re.compile(r"[A-Z][a-z]+|\d+|[A-Z]+(?![a-z])")
return pattern.findall(tag)
def clean_hashtag(text):
words = text.split()
text = list()
for word in words:
if is_hashtag(word):
text.extend(extract_hashtag(word))
else:
text.append(word)
return " ".join(text)
def is_hashtag(word):
if word.startswith("#"):
return True
else:
return False
def extract_hashtag(text):
hash_list = ([re.sub(r"(\W+)$", "", i) for i in text.split() if i.startswith("#")])
word_list = []
for word in hash_list :
word_list.extend(split_hashtag_to_words(word))
return word_list
# Define the preprocessing Class
class Preprocessor:
def __init__(self, tokenizer, **cfg):
self.tokenizer = tokenizer
def __call__(self, text):
preprocessed = clean_str(text)
return self.tokenizer(preprocessed)
#---------------------------------------------------------------------------------------------------------------
#----------------------------------------- END OF PRE-PROCESSING------------------------------------------------
#---------------------------------------------------------------------------------------------------------------
# Apply the `Preprocessor` Class
nlp.tokenizer = Preprocessor(nlp.tokenizer)
if len(tx) != 0:
googlenews = GoogleNews(lang='ar')
googlenews.clear()
f =0
Prediction =''
top_similar_ind =''
top_similar_news =''
medium =''
top_similar_ind2 =''
tp_desc =''
st.markdown(f"Searching for: { tx }")
st.markdown(f"ูููููููููููููููููููููููููููููููููููููููููููููููููููููููููููููููููููููููููููููููููููููููููููููู")
tx = clean_hashtag(tx)
tx = clean_str(tx)
googlenews.search(tx)
result = googlenews.page_at(1)
googlenews.clear()
if len(result) == 0:
Prediction ='ุงูุฎุจุฑ ุฒุงุฆู'
top_similar_news ='ูุง ููุฌุฏ ุงุฎุจุงุฑ ู
ู
ุงุซูู'
medium ='ูุง ููุฌุฏ ู
ุตุฏุฑ'
tp_desc ='ูุง ููุฌุฏ ูุตู'
else:
result_text = {"Text":[]}
#google search
for i in range(len(result)):
title =result[i]['title']
result_text['Text'].append(title)
result_text2 = {"Text":[]}
#google search
for i in range(len(result)):
desc =result[i]['desc']
result_text2['Text'].append(desc)
result_text = pd.DataFrame(result_text)
result_text2 = pd.DataFrame(result_text2)
data = pd.DataFrame()
data['Text2'] = result_text['Text'].copy()
data['Text2'] = data['Text2'].apply(lambda x: nlp(x).similarity(nlp(tx)))
sg300top = data['Text2'].max(axis = 0)
top_similar_ind = np.argmax(data['Text2'])
top_similar_news = result[top_similar_ind]['title']
descr = result[top_similar_ind]['desc']
medium = result[top_similar_ind]['media']
date = result[top_similar_ind]['date']
link = result[top_similar_ind]['link']
data['Text3'] = result_text2['Text'].copy()
data['Text3'] = data['Text3'].apply(lambda x: nlp(x).similarity(nlp(tx)))
sg300top2 = data['Text3'].max(axis = 0)
top_similar_ind2 = np.argmax(data['Text3'])
tp_desc = result[top_similar_ind2]['desc']
if sg300top >= .85 or sg300top2 >= .85 :
Prediction ='ุงูุฎุจุฑ ุตุญูุญ'
else:
Prediction =' ุงูุฎุจุฑ ุฒุงุฆู'
st.markdown(f"System Prediction : { Prediction }")
st.markdown(f"ุงูุฎุจุฑ ุงูู
ู
ุงุซู: { top_similar_news }")
st.markdown(f"")
st.markdown(f"ุชุงุฑูุฎ ุงูุฎุจุฑ: { date }")
st.markdown(f"")
st.markdown(f"ุงูุชูุตูู: { descr }")
st.markdown(f"")
st.markdown(f"ุงูู
ุตุฏุฑ: { medium }")
st.markdown(f"")
st.markdown(f"ุฑุงุจุท ุงูุฎุจุฑ: { link }")
#st.markdown(f"Searching for: { tx }") |