File size: 7,900 Bytes
d1369a2
9eda2f5
 
 
d1369a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eda2f5
d1369a2
 
 
 
 
 
65fefb5
 
 
 
 
 
d1369a2
65fefb5
 
f89cae0
 
 
 
8fe9801
 
d1369a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65fefb5
56c6bd4
d1369a2
 
 
 
 
9eda2f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import polars as pl
from data import data_df

from types import SimpleNamespace

def filter_data_by_date_and_game_kind(data, start_date=None, end_date=None, game_kind=None):
  if start_date is not None:
    data = data.filter(pl.col('date') >= start_date)
  if end_date is not None:
    data = data.filter(pl.col('date') <= end_date)
  if game_kind is not None:
    data = data.filter(pl.col('coarse_game_kind') == game_kind)
  return data

def compute_team_games(data):
  data = (
      data
      .with_columns(
          pl.col('gameId').unique().len().over('HomeTeamNameES').alias('home_games'),
          pl.col('gameId').unique().len().over('VisitorTeamNameES').alias('visitor_games')
      )
  )
  game_data = (
      data
      .group_by('HomeTeamNameES')
      .first()
      [['HomeTeamNameES', 'home_games']]
      .rename({'HomeTeamNameES': 'team'})
      .join(
          (
              data
              .group_by('VisitorTeamNameES')
              .first()
              [['VisitorTeamNameES', 'visitor_games']]
              .rename({'VisitorTeamNameES': 'team'})
          ),
          on='team',
      )
      .with_columns((pl.col('home_games')+pl.col('visitor_games')).alias('games'))
  )

  return (
      data
      .drop('home_games', 'visitor_games')
      .join(
          game_data[['team', 'games']].rename({'games': 'home_games'}),
          left_on='HomeTeamNameES',
          right_on='team'
      )
      .join(
          game_data[['team', 'games']].rename({'games': 'visitor_games'}),
          left_on='VisitorTeamNameES',
          right_on='team'
      )
  )


def compute_pitch_stats(data, player_type, pitch_class_type, min_pitches=1):
  assert player_type in ('pitcher', 'batter')
  assert pitch_class_type in ('general', 'specific')
  id_col = 'pitId' if player_type == 'pitcher' else 'batId'
  pitch_col = 'ballKind_code' if pitch_class_type == 'specific' else 'general_ballKind_code'
  pitch_name_col = 'ballKind' if pitch_class_type == 'specific' else 'general_ballKind'
  pitch_stats = (
      data
      .group_by(id_col, pitch_col, 'pitcher_team_name_short')
      .agg(
          pl.first('pitcher_name'),
          *([pl.first('general_ballKind')] if pitch_class_type == 'specific' else []),
          pl.first(pitch_name_col),
          pl.len().alias('count'),
          pl.col('aux_bresult').struct.field('batType').drop_nulls().value_counts(normalize=True),
          (pl.col('swing').sum() / pl.col('pitch').sum()).alias('Swing%'),
          ((pl.col('swing') & pl.col('zone')).sum() / pl.col('pitch').sum()).alias('Z-Swing%'),
          ((pl.col('swing') & ~pl.col('zone')).sum() / pl.col('pitch').sum()).alias('Chase%'),
          ((pl.col('swing') & ~pl.col('whiff')).sum()/pl.col('swing').sum()).alias('Contact%'),
          ((pl.col('zone') & pl.col('swing') & ~pl.col('whiff')).sum()/(pl.col('zone') & pl.col('swing')).sum()).alias('Z-Contact%'),
          ((~pl.col('zone') & pl.col('swing') & ~pl.col('whiff')).sum()/(~pl.col('zone') & pl.col('swing')).sum()).alias('O-Contact%'),
          (pl.col('whiff').sum() / pl.col('swing').sum()).alias('Whiff%'),
          (pl.col('whiff').sum() / pl.col('pitch').sum()).alias('SwStr%'),
          (pl.col('csw').sum() / pl.col('pitch').sum()).alias('CSW%'),
          (pl.col('zone').sum() / pl.col('pitch').sum()).alias('Zone%'),
          (pl.when(pl.col('pitLR') == 'r').then(pl.col('x') < 0).otherwise(pl.col('x') > 0)).mean().alias('Glove%'),
          (pl.when(pl.col('pitLR') == 'r').then(pl.col('x') >= 0).otherwise(pl.col('x') <= 0)).mean().alias('Arm%'),
          (pl.col('y') > 125).mean().alias('High%'),
          (pl.col('y') <= 125).mean().alias('Low%'),
          (pl.col('x').is_between(-20, 20) & pl.col('y').is_between(100, 100+50)).mean().alias('MM%')
      )
      .with_columns(
          (pl.col('count')/pl.sum('count').over('pitId')).alias('usage'),
          (pl.col('count') >= min_pitches).alias('qualified')
      )
      .explode('batType')
      .unnest('batType')
      .pivot(on='batType', values='proportion')
      .fill_null(0)
      .with_columns(
          (pl.col('G') + pl.col('B')).alias('GB%'),
          (pl.col('F') + pl.col('P')).alias('FB%'),
          pl.col('L').alias('LD%').round(2),
      )
      .drop('G', 'F', 'B', 'P', 'L', 'null')
      .with_columns(
          (pl.when(pl.col('qualified')).then(pl.col(stat)).rank(descending=((stat in ['FB%', 'LD%'] or 'Contact%' in stat)))/pl.when(pl.col('qualified')).then(pl.col(stat)).count()).alias(f'{stat}_pctl')
          for stat in ['Swing%', 'Z-Swing%', 'Chase%', 'Contact%', 'Z-Contact%', 'O-Contact%', 'SwStr%', 'Whiff%', 'CSW%', 'GB%', 'FB%', 'LD%', 'Zone%']
      )
      .rename({pitch_col: 'ballKind_code', pitch_name_col: 'ballKind'} if pitch_class_type == 'general' else {})
      .sort(id_col, 'count', descending=[False, True])
  )
  return pitch_stats


def get_pitcher_stats(id, lr=None, game_kind=None, start_date=None, end_date=None, min_ip=1, min_pitches=1, pitch_class_type='specific'):
  source_data = data_df.filter(pl.col('ballKind_code') != '-')

  # if start_date is not None:
    # source_data = source_data.filter(pl.col('date') >= start_date)
  # if end_date is not None:
    # source_data = source_data.filter(pl.col('date') <= end_date)
# 
  # if game_kind is not None:
    # source_data = source_data.filter(pl.col('coarse_game_kind') == game_kind)
  source_data = filter_data_by_date_and_game_kind(source_data, start_date=start_date, end_date=end_date, game_kind=game_kind)

  source_data = (
      compute_team_games(source_data)
      .with_columns(
          pl.when(pl.col('half_inning').str.ends_with('1')).then('home_games').otherwise('visitor_games').first().over('pitId').alias('games'),
          pl.col('inning_code').unique().len().over('pitId').alias('IP')
      )
  )

  if min_ip == 'qualified':
    source_data = source_data.with_columns((pl.col('IP') >= pl.col('games')).alias('qualified'))
  else:
    source_data = source_data.with_columns((pl.col('IP') >= min_ip).alias('qualified'))

  if lr is not None:
    source_data = source_data.filter(pl.col('batLR') == lr)

  pitch_stats = compute_pitch_stats(source_data, player_type='pitcher', pitch_class_type=pitch_class_type, min_pitches=min_pitches).filter(pl.col('pitId') == id)

  pitch_shapes = (
      source_data
      .filter(
          (pl.col('pitId') == id) &
          pl.col('x').is_not_null() &
          pl.col('y').is_not_null() &
          (pl.col('ballSpeed') > 0)
      )
      [['pitId', 'general_ballKind_code', 'ballKind_code', 'ballSpeed', 'x', 'y']]
  )

  pitcher_stats = (
      source_data
      .group_by('pitId')
      .agg(
          pl.col('pitcher_name').first(),
          (pl.when(pl.col('presult').str.contains('strikeout')).then(1).otherwise(0).sum() / pl.col('pa_code').unique().len()).alias('K%'),
          (pl.when(pl.col('presult') == 'Walk').then(1).otherwise(0).sum() / pl.col('pa_code').unique().len()).alias('BB%'),
          (pl.col('csw').sum() / pl.col('pitch').sum()).alias('CSW%'),
          pl.col('aux_bresult').struct.field('batType').drop_nulls().value_counts(normalize=True),
          pl.first('qualified')
      )
      .explode('batType')
      .unnest('batType')
      .pivot(on='batType', values='proportion')
      .fill_null(0)
      .with_columns(
          (pl.col('G') + pl.col('B')).alias('GB%'),
          (pl.col('F') + pl.col('P')).alias('FB%'),
          pl.col('L').alias('LD%'),
      )
      .drop('G', 'F', 'B', 'P', 'L')
      .with_columns(
          (pl.when(pl.col('qualified')).then(pl.col(stat)).rank(descending=(stat == 'BB%'))/pl.when(pl.col('qualified')).then(pl.col(stat)).count()).alias(f'{stat}_pctl')
          for stat in ['CSW%', 'K%', 'BB%', 'GB%']
      )
      .filter(pl.col('pitId') == id)
  )

  return SimpleNamespace(pitcher_stats=pitcher_stats, pitch_stats=pitch_stats, pitch_shapes=pitch_shapes)