|
|
|
import cv2 |
|
import numpy as np |
|
import gradio as gr |
|
from ultralytics import YOLO |
|
import easyocr |
|
|
|
|
|
model_path = "YOLOv8n.pt" |
|
yolo_model = YOLO(model_path) |
|
|
|
|
|
easyocr_reader = easyocr.Reader(['en'], gpu=False) |
|
|
|
def detect_and_read_plate(image_np): |
|
results = yolo_model.predict(source=image_np, conf=0.25) |
|
boxes = results[0].boxes.xyxy.cpu().numpy().astype(int) |
|
|
|
annotated_image = image_np.copy() |
|
detected_texts = [] |
|
|
|
for i, box in enumerate(boxes): |
|
x1, y1, x2, y2 = box[:4] |
|
cropped_plate = image_np[y1:y2, x1:x2] |
|
text_results = easyocr_reader.readtext(cropped_plate) |
|
|
|
plate_texts = [] |
|
for (bbox, text, conf) in text_results: |
|
if conf > 0.3: |
|
plate_texts.append(text) |
|
|
|
plate_text = ' '.join(plate_texts) |
|
detected_texts.append(f"Plate {i+1}: {plate_text}") |
|
|
|
cv2.rectangle(annotated_image, (x1, y1), (x2, y2), (0, 255, 0), 2) |
|
cv2.putText(annotated_image, plate_text, (x1, y1 - 10), |
|
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 0), 2) |
|
|
|
return annotated_image, '\n'.join(detected_texts) |
|
|
|
demo = gr.Interface( |
|
fn=detect_and_read_plate, |
|
inputs=gr.Image(type="numpy", label="Upload Image"), |
|
outputs=[ |
|
gr.Image(type="numpy", label="Detected Image with Plate Text"), |
|
gr.Textbox(label="Detected Plate Texts") |
|
], |
|
title="Number Plate Detection and OCR", |
|
description="YOLOv8 detects license plates and EasyOCR reads the number." |
|
) |
|
|
|
demo.launch() |